The modification of silicon in an Al-30Si alloy was studied using optical microscopy, electron probe micro-analysis, transmission electron microscopy and differential scanning calorimetry. It is found that phosphorus ...The modification of silicon in an Al-30Si alloy was studied using optical microscopy, electron probe micro-analysis, transmission electron microscopy and differential scanning calorimetry. It is found that phosphorus master alloys combined with boron master alloys have good modification effect on primary silicon but no evident modification effect on eutectic silicon, while boron combined with cerium has good modification effect on eutectic silicon. The results of differential scanning calorimetry show that phosphorus, boron or cerium addition and their combined addition have different undercooling effects on eutectic silicon. Many scholars thought that AlP particles were the nuclei of eutectic silicon when phosphorus was enough in the alloy. Our results show that β-(Al,Si,Fe) can still be the nucleus of plate-like entectic silicon while AlP is the nucleus of primary silicon when there is enough phosphorus in the melt. In addition, the mechanism about the modification was also discussed.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars (No.50625101)the Key Project of Science and Technology Research of the Ministry of Education of China (No.106103)
文摘The modification of silicon in an Al-30Si alloy was studied using optical microscopy, electron probe micro-analysis, transmission electron microscopy and differential scanning calorimetry. It is found that phosphorus master alloys combined with boron master alloys have good modification effect on primary silicon but no evident modification effect on eutectic silicon, while boron combined with cerium has good modification effect on eutectic silicon. The results of differential scanning calorimetry show that phosphorus, boron or cerium addition and their combined addition have different undercooling effects on eutectic silicon. Many scholars thought that AlP particles were the nuclei of eutectic silicon when phosphorus was enough in the alloy. Our results show that β-(Al,Si,Fe) can still be the nucleus of plate-like entectic silicon while AlP is the nucleus of primary silicon when there is enough phosphorus in the melt. In addition, the mechanism about the modification was also discussed.