城区中有毒气体突发性泄漏时,需要快速对泄漏源进行定位和识别,以便科学预测气体的蔓延及其影响范围。利用基于Bayes推断理论的MCMC(Markov chain Monte Carlo)抽样方法,根据城市中分布的传感器测量信息和气体扩散数值计算模型,构造似...城区中有毒气体突发性泄漏时,需要快速对泄漏源进行定位和识别,以便科学预测气体的蔓延及其影响范围。利用基于Bayes推断理论的MCMC(Markov chain Monte Carlo)抽样方法,根据城市中分布的传感器测量信息和气体扩散数值计算模型,构造似然函数,对泄漏源的位置、强度进行反演。计算了这些参数和空间各点浓度的相关统计量,表明反演结果与泄漏源的真实参数十分吻合。此外,还讨论了传感器测量误差的概率分布对结果的影响。结果表明,误差概率会显著影响计算效果,概率分布越平坦,泄漏源反演信息的不确定度越大。展开更多
文摘城区中有毒气体突发性泄漏时,需要快速对泄漏源进行定位和识别,以便科学预测气体的蔓延及其影响范围。利用基于Bayes推断理论的MCMC(Markov chain Monte Carlo)抽样方法,根据城市中分布的传感器测量信息和气体扩散数值计算模型,构造似然函数,对泄漏源的位置、强度进行反演。计算了这些参数和空间各点浓度的相关统计量,表明反演结果与泄漏源的真实参数十分吻合。此外,还讨论了传感器测量误差的概率分布对结果的影响。结果表明,误差概率会显著影响计算效果,概率分布越平坦,泄漏源反演信息的不确定度越大。