Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrys...Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO_2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO_2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO_2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm.Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance.展开更多
This work, based on the junction recombination velocity (Sfu) concept, is used to study the solar cell’s electric power at any real operating point. Using Sfu and the back side recombination velocity (Sbu) in a 3D mo...This work, based on the junction recombination velocity (Sfu) concept, is used to study the solar cell’s electric power at any real operating point. Using Sfu and the back side recombination velocity (Sbu) in a 3D modelling study, the continuity equation is resolved. We determined the photocurrent density, the photovoltage and the solar cell’s electric power which is a calibrated function of the junction recombination velocity (Sfu). Plots of solar cell’s electric power with the junction recombination velocity give the maximum solar cell’s electric power, Pm. Influence of various parameters such as grain size (g), grain boundaries recombination velocity (Sgb), wavelength (λ) and for different illumination modes on the solar cell’s electric power is studied.展开更多
We report the study of the temperature dependance of the performance electronic parameters of an N-P solar cell by considering as model, the columnar cylindrical orientation associated to the dynamic junction velocity...We report the study of the temperature dependance of the performance electronic parameters of an N-P solar cell by considering as model, the columnar cylindrical orientation associated to the dynamic junction velocity (SF) concept. We presented the photocurrent-photovoltage (I-V) and Power-photovoltage (P-V) characteristic curves. The short-circuit photocurrent (Isc), the open circuit photovoltage (Uoc), the fill factor (FF) and the efficiency (η) are linearly dependent on the temperature. The temperature coefficients (T-coefficient) relative to the short-circuit, open-circuit photovoltage and efficiency are calculated and the comparison with data from the literature showed the accuracy of the considered model.展开更多
A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface ...A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.展开更多
The present paper is about a contribution to the bifacial PV cell performances improvement. The PV cell efficiency is weak compared to the strong energy demand. In this study, the base thickness impacts and the p+<...The present paper is about a contribution to the bifacial PV cell performances improvement. The PV cell efficiency is weak compared to the strong energy demand. In this study, the base thickness impacts and the p+</sup> zone size influence are evaluated on the rear face of the polycrystalline back surface field bifacial silicon PV cell. The photocurrent density and photovoltage behaviors versus thickness of these regions are studied. From a three-dimensional grain of the polycrystalline bifacial PV cell, the magneto-transport and continuity equations of excess minority carriers are solved to find the expression of the density of excess minority carriers and the related electrical parameters, such as the photocurrent density, the photovoltage and the electric power for simultaneous illumination on both sides. The photocurrent density, the photovoltage and electric power versus junction dynamic velocity decrease for different thicknesses of base and the p+</sup> region increases for simultaneous illumination on both sides. It is found that the thickness of the p+</sup> region at 0.1 μm and the base size at 100 μm allow reaching the best bifacial PV cell performances. Consequently, it is imperative to consider the reduction in the thickness of the bifacial PV cell for exhibition of better performance. This reduced the costs and increase production speed while increasing conversion efficiency.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11104319,11274346,51202285,61234005,51172268,51602340,61274059,and 51402347)the Solar Energy Action Plan of Chinese Academy of Sciences(Grant Nos.Y1YT064001,Y1YF034001,and Y2YF014001)+2 种基金the Graduate and College Student’s Innovative Project(Grant No.YC2016-X19)the Project of Beijing Municipal Science and Technology Commission(Grant No.Z151100003515003)the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics,Chinese Academy of Sciences
文摘Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO_2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO_2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO_2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm.Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance.
文摘This work, based on the junction recombination velocity (Sfu) concept, is used to study the solar cell’s electric power at any real operating point. Using Sfu and the back side recombination velocity (Sbu) in a 3D modelling study, the continuity equation is resolved. We determined the photocurrent density, the photovoltage and the solar cell’s electric power which is a calibrated function of the junction recombination velocity (Sfu). Plots of solar cell’s electric power with the junction recombination velocity give the maximum solar cell’s electric power, Pm. Influence of various parameters such as grain size (g), grain boundaries recombination velocity (Sgb), wavelength (λ) and for different illumination modes on the solar cell’s electric power is studied.
文摘We report the study of the temperature dependance of the performance electronic parameters of an N-P solar cell by considering as model, the columnar cylindrical orientation associated to the dynamic junction velocity (SF) concept. We presented the photocurrent-photovoltage (I-V) and Power-photovoltage (P-V) characteristic curves. The short-circuit photocurrent (Isc), the open circuit photovoltage (Uoc), the fill factor (FF) and the efficiency (η) are linearly dependent on the temperature. The temperature coefficients (T-coefficient) relative to the short-circuit, open-circuit photovoltage and efficiency are calculated and the comparison with data from the literature showed the accuracy of the considered model.
基金This project was financially supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (No.0329571B).
文摘A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification.
文摘The present paper is about a contribution to the bifacial PV cell performances improvement. The PV cell efficiency is weak compared to the strong energy demand. In this study, the base thickness impacts and the p+</sup> zone size influence are evaluated on the rear face of the polycrystalline back surface field bifacial silicon PV cell. The photocurrent density and photovoltage behaviors versus thickness of these regions are studied. From a three-dimensional grain of the polycrystalline bifacial PV cell, the magneto-transport and continuity equations of excess minority carriers are solved to find the expression of the density of excess minority carriers and the related electrical parameters, such as the photocurrent density, the photovoltage and the electric power for simultaneous illumination on both sides. The photocurrent density, the photovoltage and electric power versus junction dynamic velocity decrease for different thicknesses of base and the p+</sup> region increases for simultaneous illumination on both sides. It is found that the thickness of the p+</sup> region at 0.1 μm and the base size at 100 μm allow reaching the best bifacial PV cell performances. Consequently, it is imperative to consider the reduction in the thickness of the bifacial PV cell for exhibition of better performance. This reduced the costs and increase production speed while increasing conversion efficiency.