An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The f...An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The filament current of ll00A,filament voltage of 12V,arc current of 1050A,arc voltage of 120V,highest plasmas density of 2.5×10^(12)/cm^3,extracted ion beam density of 0.44A/cm^2,plasma density uniformity better than 5% in the area close to the first grid,duration of 2s,for this new source,have been achieved.The conceptual design,mechanical design and experiment result for the ion source are presented briefly in this paper.展开更多
A phase-controlled lower hybrid wave (LHW) multi-junction (M J) coupler (3(rows)×4(columns)×4 (subwaveguides)) has been developed in the HT-7 tokamak. Simulations show that it is more effective f...A phase-controlled lower hybrid wave (LHW) multi-junction (M J) coupler (3(rows)×4(columns)×4 (subwaveguides)) has been developed in the HT-7 tokamak. Simulations show that it is more effective for driving plasma current than an ordinary phase-controlled LHW antenna (3(rows)× 12(columns)) (traditional coupler). The plasm-wave coupling experiments show that the reflection coefficient (RC) is below 10%, implying that the MJ grill can launch the wave into the plasma effectively. The effect of power spectrum launched by the MJ coupler on RC indicates that an optimal condition is requisite for a better coupling in the lower hybrid current drive (LHCD) experiments, Studies indicate that the drive efficiency of the MJ antenna is higher than that of the traditional one, which is mainly ascribed to the discrepancy in impurity concentration, plasma temperature, and spectrum directivity. An improved confinement with an electron internal transport barrier is obtained by LHCD. The analysis shows that the modified negative (low) magnetic shear and the change of radial electric field profile due to LHCD are possible factors responsible for the eITB formation.展开更多
We developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.1 × 1021 m<sup>?3</sup> at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas ...We developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.1 × 1021 m<sup>?3</sup> at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 10 sccm. We confirmed that the temperatures of transition-metal films increased to above 800<sup>。</sup>C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of nickel films deposited on silicon wafers and formed nickel silicide electrodes. We found that this heat phenomenon automatically stopped after the nickel slicidation reaction finished. To utilize this method, we can perform the nickel silicidation process without heating the other areas such as channel regions and improve the reliability of silicon ultralarge-scale integration devices.展开更多
The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation.While chemical methods have been explored extensively for this purpose,pla...The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation.While chemical methods have been explored extensively for this purpose,plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks.However,the conventional plasma approach introduces complexities,leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment.In our pursuit of heterostructures with optimized oxygen evolution reaction(OER)behavior,we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni_(3)N-NiO heterostructure(hNiNO).By meticulously controlling the surface heating process during plasma processing,such approach allows for the streamlined fabrication of hNiNO nano-frameworks.The resulting nano-framework exhibits outstanding catalytic performance,as evidenced by its overpotential of 320 mV at a current density of 10 mA·cm^(-2),in an alkaline environment.This stands in stark contrast to the performance of NiO-covered Ni_(3)N fabricated using the conventional plasma method(sNiNO).Operando plasma diagnostics,coupled with numerical simulations,further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni_(3)N-NiO nanostructure,highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.展开更多
The effect of neutral pressure on the blue core in Ar helicon plasma under an inhomogeneous magnetic field was investigated in this work.The neutral pressure was set to 0.08 Pa,0.36 Pa,and 0.68 Pa.A Nikon camera,inten...The effect of neutral pressure on the blue core in Ar helicon plasma under an inhomogeneous magnetic field was investigated in this work.The neutral pressure was set to 0.08 Pa,0.36 Pa,and 0.68 Pa.A Nikon camera,intensified charge-coupled device(ICCD),optical emission spectrometer(OES),and Langmuir probe were used to diagnose the blue core in helicon plasma.Helicon plasma discharges experienced density jumps from the E mode,H mode to W mode before power just rose to 200 W.The plasma density increased and maintained a central peak with the increase of neutral pressure.However,the brightness of the blue core gradually decreased.It is demonstrated that the relative intensity of Ar II spectral lines and the ionization rate in the central area were reduced.Radial electron temperature profiles were flattened and became hollow as neutral pressure increased.It is demonstrated that increasing the neutral pressure weakened the central heating efficiency dominated by the helicon wave and strengthened the edge heating efficiency governed by the TG wave and skin effect.Therefore,the present experiment successfully reveals how the neutral pressure affects the heating mechanism of helicon plasma in an inhomogeneous magnetic field.展开更多
文摘An ion source for HL-2A Neutral Beam Injection(NBI)was operated successfully in March 2007,in South- western Institute of Physics.A bucket source type and three-grid-system are used in this new ion source design.The filament current of ll00A,filament voltage of 12V,arc current of 1050A,arc voltage of 120V,highest plasmas density of 2.5×10^(12)/cm^3,extracted ion beam density of 0.44A/cm^2,plasma density uniformity better than 5% in the area close to the first grid,duration of 2s,for this new source,have been achieved.The conceptual design,mechanical design and experiment result for the ion source are presented briefly in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10205015 and 10575104).Acknowledgement 0ne of the authors, Ding B J, would like to thank the members of HT-7 Team for their cooperation and kindly help.
文摘A phase-controlled lower hybrid wave (LHW) multi-junction (M J) coupler (3(rows)×4(columns)×4 (subwaveguides)) has been developed in the HT-7 tokamak. Simulations show that it is more effective for driving plasma current than an ordinary phase-controlled LHW antenna (3(rows)× 12(columns)) (traditional coupler). The plasm-wave coupling experiments show that the reflection coefficient (RC) is below 10%, implying that the MJ grill can launch the wave into the plasma effectively. The effect of power spectrum launched by the MJ coupler on RC indicates that an optimal condition is requisite for a better coupling in the lower hybrid current drive (LHCD) experiments, Studies indicate that the drive efficiency of the MJ antenna is higher than that of the traditional one, which is mainly ascribed to the discrepancy in impurity concentration, plasma temperature, and spectrum directivity. An improved confinement with an electron internal transport barrier is obtained by LHCD. The analysis shows that the modified negative (low) magnetic shear and the change of radial electric field profile due to LHCD are possible factors responsible for the eITB formation.
文摘We developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.1 × 1021 m<sup>?3</sup> at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 10 sccm. We confirmed that the temperatures of transition-metal films increased to above 800<sup>。</sup>C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of nickel films deposited on silicon wafers and formed nickel silicide electrodes. We found that this heat phenomenon automatically stopped after the nickel slicidation reaction finished. To utilize this method, we can perform the nickel silicidation process without heating the other areas such as channel regions and improve the reliability of silicon ultralarge-scale integration devices.
基金supported by the National Natural Science Foundation of China(Nos.12304020,21905118,and 22378204)National Science Fund for Distinguished Young Scholars(No.T2125004)+1 种基金the Natural Science Foundation of Jiangsu Province(No.BK20230909)Fundamental Research Funds for the Central Universities(No.30923011013)。
文摘The facile reconfiguration of phases plays a pivotal role in enhancing the electrocatalytic production of H2 through heterostructure formation.While chemical methods have been explored extensively for this purpose,plasma-based techniques offer a promising avenue for achieving heterostructured nano-frameworks.However,the conventional plasma approach introduces complexities,leading to a multi-step fabrication process and challenges in precisely controlling partial surface structure modulation due to the intricate interaction environment.In our pursuit of heterostructures with optimized oxygen evolution reaction(OER)behavior,we have designed a facile auxiliary insulator-confined plasma system to directly attain a Ni_(3)N-NiO heterostructure(hNiNO).By meticulously controlling the surface heating process during plasma processing,such approach allows for the streamlined fabrication of hNiNO nano-frameworks.The resulting nano-framework exhibits outstanding catalytic performance,as evidenced by its overpotential of 320 mV at a current density of 10 mA·cm^(-2),in an alkaline environment.This stands in stark contrast to the performance of NiO-covered Ni_(3)N fabricated using the conventional plasma method(sNiNO).Operando plasma diagnostics,coupled with numerical simulations,further substantiates the influence of surface heating due to auxiliary insulator confinement of the substrate on typical plasma parameters and the formation of the Ni_(3)N-NiO nanostructure,highlighting the pivotal role of controlled surface temperature in creating a high-performance heterostructured electrocatalyst.
基金supported by National Natural Science Foundation of China(Nos.11505013 and 11875090)Beijing Municipal Natural Science Foundation(No.1192008)Beijing Municipal Commission of Education(Nos.KM202010015003,22150122029,and 202210015017)。
文摘The effect of neutral pressure on the blue core in Ar helicon plasma under an inhomogeneous magnetic field was investigated in this work.The neutral pressure was set to 0.08 Pa,0.36 Pa,and 0.68 Pa.A Nikon camera,intensified charge-coupled device(ICCD),optical emission spectrometer(OES),and Langmuir probe were used to diagnose the blue core in helicon plasma.Helicon plasma discharges experienced density jumps from the E mode,H mode to W mode before power just rose to 200 W.The plasma density increased and maintained a central peak with the increase of neutral pressure.However,the brightness of the blue core gradually decreased.It is demonstrated that the relative intensity of Ar II spectral lines and the ionization rate in the central area were reduced.Radial electron temperature profiles were flattened and became hollow as neutral pressure increased.It is demonstrated that increasing the neutral pressure weakened the central heating efficiency dominated by the helicon wave and strengthened the edge heating efficiency governed by the TG wave and skin effect.Therefore,the present experiment successfully reveals how the neutral pressure affects the heating mechanism of helicon plasma in an inhomogeneous magnetic field.