A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a (G), is the least number of colors in an acyclic edge coloring of G. Alon...A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a (G), is the least number of colors in an acyclic edge coloring of G. Alon et al. conjectured that a (G) Δ(G) + 2 for any graphs. For planar graphs G with girth g(G), we prove that a (G) max{2Δ(G) + 2, Δ(G) + 22} if g(G) 3, a (G) Δ(G) + 2 if g(G) 5, a (G) Δ(G) + 1 if g(G) 7, and a (G) = Δ(G) if g(G) 16 and Δ(G) 3. For series-parallel graphs G, we have a (G) Δ(G) + 1.展开更多
A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each e...A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let X(G ) denote the smallest value k in such a ' G coloring of G. This parameter makes sense for graphs containing no isolated edges (we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 〈 5 then x'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.展开更多
Let G be a simple graph with maximum degree Δ(G) and total chromatic number x ve (G). Vizing conjectured that Δ(G) + 1 ? X ve (G) ? δ(G) + 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has...Let G be a simple graph with maximum degree Δ(G) and total chromatic number x ve (G). Vizing conjectured that Δ(G) + 1 ? X ve (G) ? δ(G) + 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs is Δ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then x ve (G) ? 8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 10871119)NaturalScience Foundation of Shandong Province (Grant No. Y2008A20).
文摘A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G, denoted by a (G), is the least number of colors in an acyclic edge coloring of G. Alon et al. conjectured that a (G) Δ(G) + 2 for any graphs. For planar graphs G with girth g(G), we prove that a (G) max{2Δ(G) + 2, Δ(G) + 22} if g(G) 3, a (G) Δ(G) + 2 if g(G) 5, a (G) Δ(G) + 1 if g(G) 7, and a (G) = Δ(G) if g(G) 16 and Δ(G) 3. For series-parallel graphs G, we have a (G) Δ(G) + 1.
基金Supported by National Natural Science Foundation of China(Grant Nos.11371355,11471193,11271006,11631014)the Foundation for Distinguished Young Scholars of Shandong Province(Grant No.JQ201501)the Fundamental Research Funds of Shandong University and Independent Innovation Foundation of Shandong University(Grant No.IFYT14012)
文摘A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let X(G ) denote the smallest value k in such a ' G coloring of G. This parameter makes sense for graphs containing no isolated edges (we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 〈 5 then x'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.
基金This work was partially supported by the National Natural Science Foundation of China (Grant No. 10471131)
文摘Let G be a simple graph with maximum degree Δ(G) and total chromatic number x ve (G). Vizing conjectured that Δ(G) + 1 ? X ve (G) ? δ(G) + 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs is Δ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then x ve (G) ? 8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.
基金supported by the Scientific Research Fund of Zhejiang Provincial Education Department(Y201226078)The third author was supported partially by NSFC(11071223)ZJNSF(Z6090150)