In this paper, firstly, target candidate regions are extracted by combining maximum symmetric surround saliency detection algorithm with a cellular automata dynamic evolution model. Secondly, an eigenvector independen...In this paper, firstly, target candidate regions are extracted by combining maximum symmetric surround saliency detection algorithm with a cellular automata dynamic evolution model. Secondly, an eigenvector independent of the ship target size is constructed by combining the shape feature with ship histogram of oriented gradient(S-HOG) feature, and the target can be recognized by Ada Boost classifier. As demonstrated in our experiments, the proposed method with the detection accuracy of over 96% outperforms the state-of-the-art method. efficiency switch and modulation.展开更多
在面向对象多光谱图像分割方法中,初始对象特征往往无法反映真实区域的整体特征,从而产生错误的合并结果。针对以上问题,提出采用简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素与结构张量粗分割相结合的方法对其进...在面向对象多光谱图像分割方法中,初始对象特征往往无法反映真实区域的整体特征,从而产生错误的合并结果。针对以上问题,提出采用简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素与结构张量粗分割相结合的方法对其进行改进。先采用SLIC超像素方法产生初始过分割结果,用结构张量产生尺度空间下的粗分割结果,再用粗分割结果指导超像素进行初步合并,使分形网络演化方法(fractal net evolution approach,FNEA)所面向的初始对象能够表达该区域的整体特征,增强后续合并过程对噪声的抗性。将该方法与传统FNEA的分割结果对比表明,该方法具有良好的抗噪能力,对复杂城区高空间分辨率多光谱图像能够得到较好的分割结果。展开更多
Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical til...Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical tilt in VLP images.Auxiliary lines are added into the image (or the tilt-corrected image) to make the separated parts of each Chinese character to be an interconnected region.The noise regions will be eliminated after two fusing images are merged according to the minimum principle of gray values. Then,the characters are segmented by projection method (PM) and the final character images are obtained.The experimental results show that this method features fast processing and good performance in segmentation.展开更多
针对无人机精确植保过程中,果树冠层区域颜色特征和杂草相似度较高、难以分割等问题,采用基于超像素特征向量的果树冠层分割方法,以消除不同杂草特征对树冠分离的干扰,减小农药喷雾区域,节省农药使用量。通过分析无人机采集合成的样本...针对无人机精确植保过程中,果树冠层区域颜色特征和杂草相似度较高、难以分割等问题,采用基于超像素特征向量的果树冠层分割方法,以消除不同杂草特征对树冠分离的干扰,减小农药喷雾区域,节省农药使用量。通过分析无人机采集合成的样本图像在HSV彩色空间上色调与饱和度的分布情况,选取合适的阈值范围,提取样本图像中包含果树冠层与杂草的绿色区域,将提取的绿色区域RGB图像转换生成Lab和HSV彩色空间模型下的图像,然后运用简单的线性迭代聚类(Simple linear iterative clustering,SLIC)超像素分割算法将RGB图像预设分割成250个超像素单元,结合超像素的分割信息与RGB图像、Lab图像、HSV图像以及灰度图,提取超像素单元的特征向量,随机选取25%的超像素样本的特征向量作为SVM分类器的训练集,利用SVM分类器对所有样本进行预测分类,实现果树冠层与杂草分割。将基于超像素特征向量的方法和基于光谱阈值、K-means聚类的2种方法进行对比分析,结果显示,基于超像素特征向量的方法在识别果树冠层位置方面生产者精度为90.83%,在提取果树冠层轮廓上F测度值为87.62%,总体分割性能优于后两种方法。说明,基于超像素特征向量的方法能够较为准确地分割果树冠层与杂草,为实现无人机在果园中精确植保提供重要支撑。展开更多
基金supported by the National Natural Science Foundation of China(No.61401425)
文摘In this paper, firstly, target candidate regions are extracted by combining maximum symmetric surround saliency detection algorithm with a cellular automata dynamic evolution model. Secondly, an eigenvector independent of the ship target size is constructed by combining the shape feature with ship histogram of oriented gradient(S-HOG) feature, and the target can be recognized by Ada Boost classifier. As demonstrated in our experiments, the proposed method with the detection accuracy of over 96% outperforms the state-of-the-art method. efficiency switch and modulation.
文摘在面向对象多光谱图像分割方法中,初始对象特征往往无法反映真实区域的整体特征,从而产生错误的合并结果。针对以上问题,提出采用简单线性迭代聚类(simple linear iterative clustering,SLIC)超像素与结构张量粗分割相结合的方法对其进行改进。先采用SLIC超像素方法产生初始过分割结果,用结构张量产生尺度空间下的粗分割结果,再用粗分割结果指导超像素进行初步合并,使分形网络演化方法(fractal net evolution approach,FNEA)所面向的初始对象能够表达该区域的整体特征,增强后续合并过程对噪声的抗性。将该方法与传统FNEA的分割结果对比表明,该方法具有良好的抗噪能力,对复杂城区高空间分辨率多光谱图像能够得到较好的分割结果。
基金Scientific Research Fund of Hunan Province,PRC (No.07JJ6141)Scientific Research Fund of Hunan Provincial Education Department,PRC (No.05C720).
文摘Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical tilt in VLP images.Auxiliary lines are added into the image (or the tilt-corrected image) to make the separated parts of each Chinese character to be an interconnected region.The noise regions will be eliminated after two fusing images are merged according to the minimum principle of gray values. Then,the characters are segmented by projection method (PM) and the final character images are obtained.The experimental results show that this method features fast processing and good performance in segmentation.
文摘针对无人机精确植保过程中,果树冠层区域颜色特征和杂草相似度较高、难以分割等问题,采用基于超像素特征向量的果树冠层分割方法,以消除不同杂草特征对树冠分离的干扰,减小农药喷雾区域,节省农药使用量。通过分析无人机采集合成的样本图像在HSV彩色空间上色调与饱和度的分布情况,选取合适的阈值范围,提取样本图像中包含果树冠层与杂草的绿色区域,将提取的绿色区域RGB图像转换生成Lab和HSV彩色空间模型下的图像,然后运用简单的线性迭代聚类(Simple linear iterative clustering,SLIC)超像素分割算法将RGB图像预设分割成250个超像素单元,结合超像素的分割信息与RGB图像、Lab图像、HSV图像以及灰度图,提取超像素单元的特征向量,随机选取25%的超像素样本的特征向量作为SVM分类器的训练集,利用SVM分类器对所有样本进行预测分类,实现果树冠层与杂草分割。将基于超像素特征向量的方法和基于光谱阈值、K-means聚类的2种方法进行对比分析,结果显示,基于超像素特征向量的方法在识别果树冠层位置方面生产者精度为90.83%,在提取果树冠层轮廓上F测度值为87.62%,总体分割性能优于后两种方法。说明,基于超像素特征向量的方法能够较为准确地分割果树冠层与杂草,为实现无人机在果园中精确植保提供重要支撑。