期刊文献+

基于超像素的图像智能算法在矿物颗粒分割中的应用 被引量:5

Application of intelligent image algorithm based on super-pixel in mineral particle segmentation
下载PDF
导出
摘要 砂岩薄片岩石鉴定是油田勘探开发综合研究中认识储层特征、获取油气藏相关参数的重要基础工作;砂岩薄片鉴定的基础是矿物颗粒的分割,即把砂岩薄片图像中大量的矿物颗粒分割清楚。显微镜下砂岩薄片的图像场景复杂、矿物颗粒多,多前景目标是砂岩薄片图像分割的难点之一;不同矿物颗粒相似度高、边界模糊,传统的基于边缘特征的图像分割算法难以胜任。针对上述难点,本文提出一种基于超像素特征的矿物颗粒智能分割方法,综合利用正交偏光和单偏光图像特征,将图像分割成超像素的集合,计算超像素的色彩特征、边缘特征和纹理特征,进一步计算超像素的相似度,进行区域融合,实现砂岩薄片图像中的矿物颗粒分割,减少了颗粒相似、边界模糊对分割结果的影响。实验应用表明,该方法分割的矿物颗粒准确度和面积准确度均达到80%以上,明显优于传统的图像分割算法。 Sandstone thin section analysis is an important basis to understand the properties of reservoir and obtain the related parameters of oil and gas reservoir in the comprehensive study of oilfield exploration and development.Its basic work is to segment the mineral particles,that is,to segment the large number of mineral particles in the sandstone thin section image.Multi-foreground target is one of the difficulties in image segmentation since the image scene of sandstone thin section under microscope is complex with lots of mineral particles;due to the high similarity and fuzzy boundary of different mineral particles,the traditional image segmentation algorithm based on edge feature is not competent.To solve the above difficulties,this paper proposes a new intelligent segmentation method of mineral particles based on super-pixel features.The image is divided into a set of super pixels by comprehensive utilization of orthogonal polarized light and single polarized light image features.Then,the color,edge and texture features of the super-pixel are calculated,and the similarity of the super-pixel is further calculated to carry out regional fusion,so as to realize the mineral particle segmentation in the sandstone thin slice image,and reduce the effect of particle similarity and boundary blur on segmentation results.The experimental application shows that the accuracy of mineral particles and areas segmented by this method is more than 80%,which is obviously better than that of the traditional image segmentation algorithm.
作者 呼和 岳翔 白海强 李文倚 李建平 洪为 HU He;YUE Xiang;BAI Haiqiang;LI Wenyi;LI Jianping;HONG Wei(CNOOC Research Institute Co.,Ltd.,Beijing 100028,China)
出处 《中国海上油气》 CAS CSCD 北大核心 2021年第2期89-95,共7页 China Offshore Oil and Gas
基金 中海石油(中国)有限公司综合科研课题“人工智能在煤层气测井评价及有孔虫与砂岩薄片鉴定方面的应用研究(编号:2019-KJZC-010)”部分研究成果。
关键词 砂岩薄片图像 超像素 智能分割 矿物颗粒 sandstone thin section image super-pixel intelligent segmentation mineral particle
  • 相关文献

参考文献9

二级参考文献74

共引文献70

同被引文献53

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部