This paper presents a new chaotic Hopfield network with a piecewise linear activation function. The dynamic of the network is studied by virtue of the bifurcation diagram, Lyapunov exponents spectrum and power spectru...This paper presents a new chaotic Hopfield network with a piecewise linear activation function. The dynamic of the network is studied by virtue of the bifurcation diagram, Lyapunov exponents spectrum and power spectrum. Numerical simulations show that the network displays chaotic behaviours for some well selected parameters.展开更多
基于W alsh函数,建立一个新的函数系T n n∈N.它是一个分段线性函数序列,在0,1的子区间上其函数图像呈现三角形。并且证明了它是C[0,1]上一个完备的正交函数系。在此函数系上展成的Fourier级数有许多与三角Fourier级数相似的性质,三角形...基于W alsh函数,建立一个新的函数系T n n∈N.它是一个分段线性函数序列,在0,1的子区间上其函数图像呈现三角形。并且证明了它是C[0,1]上一个完备的正交函数系。在此函数系上展成的Fourier级数有许多与三角Fourier级数相似的性质,三角形Fourier级数的部分和在作为函数的逼近工具时确实要比三角Fourier级数优越一些。展开更多
基金Project partially supported by the China Postdoctoral Science Foundation (Grant No. 20060400705)Tianjin University Research Foundation (Grant No. TJU-YFF-08B06)
文摘This paper presents a new chaotic Hopfield network with a piecewise linear activation function. The dynamic of the network is studied by virtue of the bifurcation diagram, Lyapunov exponents spectrum and power spectrum. Numerical simulations show that the network displays chaotic behaviours for some well selected parameters.
文摘基于W alsh函数,建立一个新的函数系T n n∈N.它是一个分段线性函数序列,在0,1的子区间上其函数图像呈现三角形。并且证明了它是C[0,1]上一个完备的正交函数系。在此函数系上展成的Fourier级数有许多与三角Fourier级数相似的性质,三角形Fourier级数的部分和在作为函数的逼近工具时确实要比三角Fourier级数优越一些。