期刊文献+

基于K-拟算术运算诱导的Kp-积分模意义下分片线性函数的逼近 被引量:1

APPROXIMATION OF PIECEWISE LINEAR FUNCTION IN THE SENSE OF Kp-INTEGRAL NORM INDUCED BY K-QUASI-ARITHMETIC OPERATIONS
原文传递
导出
摘要 积分模是刻画一类可积函数空间的一个度量,分片线性函数是连通模糊系统和被逼近函数关系的桥梁,二者是研究广义模糊系统逼近性问题的两个重要工具.首先通过拓广K-拟算术运算重新定义了Kp-积分模,并依据积分转换定理证明该积分模关于拟加运算构成一个度量.其次,在Kp-积分模意义下获得了分片线性函数可按任意精度逼近一类μp-可积函数. Integral norm is a metric to describe a class of integrable function space, piecewise linear function is a bridge to connect relationship between fuzzy system and approximation function. They are two important tools to study the approximation problem of generalized fuzzy system. Firstly, the Kp-integral norm is defined by extending the quasi-subtraction operator, and we proved that the Kp-integral norm is a metric about quasi-addition operator by the integral transformation theorem. Secondly, it is obtained that the piecewise linear functions can approximate a kind of μp-integrable functions to arbitrary accuracy with respect to the Kp-integral norm.
出处 《系统科学与数学》 CSCD 北大核心 2016年第2期267-277,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61374009)资助课题
关键词 K-拟算术运算 μp-可积函数 Kp-积分模 分片线性函数 逼近性. K-quasi-arithmetic operation,μp-integrable function, Kp-integral norm,piecewise linear function, approximation.
  • 相关文献

参考文献14

二级参考文献77

共引文献59

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部