Superconductivity beyond electron-phonon mechanism is always twisted with magnetism. Based on a new field-effect transistor with solid ion conductor as the gate dielectric(SIC-FET), we successfully achieve an electric...Superconductivity beyond electron-phonon mechanism is always twisted with magnetism. Based on a new field-effect transistor with solid ion conductor as the gate dielectric(SIC-FET), we successfully achieve an electric-field-controlled phase transition between superconductor and ferromagnetic insulator in(Li,Fe)OHFeSe. A dome-shaped superconducting phase with optimal T_c of 43K is continuously tuned into a ferromagnetic insulating phase, which exhibits an electric-field-controlled quantum critical behavior. The origin of the ferromagnetism is ascribed to the order of the interstitial Fe ions expelled from the(Li,Fe)OH layers by gating-controlled Li injection. These surprising findings offer a unique platform to study the relationship between superconductivity and ferromagnetism in Fe-based superconductors. This work also demonstrates the superior performance of the SIC-FET in regulating physical properties of layered unconventional superconductors.展开更多
High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for ...High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.展开更多
In this pedagogically oriented review,we discuss the concept of Berry phase in quantum physics,paying particular attention to their manifestation in Bloch electrons.We have discussed,within the limited scope and passa...In this pedagogically oriented review,we discuss the concept of Berry phase in quantum physics,paying particular attention to their manifestation in Bloch electrons.We have discussed,within the limited scope and passage,a few examples to illustrate the rich and fascinating manifestations of Berry phase in our understanding of many a physical property of a wide range of materials,including optoelectronic responses and quantum transport properties.It is also demonstrated that various topological phases of current interest are characterized by topological numbers,which are in fact incarnations of the Berry phase.A discussion of various techniques for gauge fixing,which may be important to the computation of Berry phase related properties,is also included.展开更多
Porcelain cap and pin insulators are by far the most popular suspension insulators in high voltage(HV) distribution networks all around the world.Inspection and condition monitoring of HV insulators is also very impor...Porcelain cap and pin insulators are by far the most popular suspension insulators in high voltage(HV) distribution networks all around the world.Inspection and condition monitoring of HV insulators is also very important to the utility companies because of the critical and vital role that they play in distribution systems.In terms of safety, practicality and ease of use,remote detection methods are more popular among the line technicians.A new remote condition assessment method based on electromagnetic radiations from porcelain insulators is presented in this paper. In a lab environment,a string of two porcelain insulators is energized by a 45 kV transformer.Electromagnetic radiations due to the partial discharge activities inside the porcelain insulator are captured by passive sensors and antennas. Two cases of defective insulators on a two insulator string are studied here.The first case focuses on the effect of contaminated porcelain shells on radiation signature of partial discharges.A polluted porcelain shell with ESDD level of 0.03 mg/cm^2 was first tested.The second case studies the effect of cracks of an intentionally-cracked porcelain shell. The cracked insulator is also tested on a two insulator string.To compare the partial discharge radiation signature of different faulty insulators,phase resolved graphs were developed.The electromagnetic radiated signature of a polluted insulator and a cracked insulator was calculated and compared using phase resolved graphs.展开更多
We present a detailed investigation of the specific heat of Ca3(Ru1-xMx)2O7 (M = Ti, Fe, Mn) single crystals. Depending on the dopant and doping level, three distinct regions are present: a quasi- two-dimensional...We present a detailed investigation of the specific heat of Ca3(Ru1-xMx)2O7 (M = Ti, Fe, Mn) single crystals. Depending on the dopant and doping level, three distinct regions are present: a quasi- two-dimensional metallic state with antiferromagnetic (AFM) order formed by ferromagnetic bilayers (AFM-b), a Mott insulating state with G-type AFM order (G-AFM), and a localized state with a mixed AFM-b and G-AFM phase. Our specific heat data provide deep insights into the Mort transitions induced by Ti and Mn doping. We observed not only an anomalous large mass enhancement, but also an additional term in the specific heat, i.e., C ∝ T2, in the localized region. The C ∝ T2 term is most likely due to long-wavelength excitations with both FM and AFM components. A decrease in the Debye temperature is observed in the G-type AFM region, indicating lattice softening associated with the Mott transition.展开更多
In a superconducting topological insulator, a superconducting vortex line can trap a one-dimensional topological band with localized Majorana zero modes at the ends. Here, we study the effect of hexagonal warping and ...In a superconducting topological insulator, a superconducting vortex line can trap a one-dimensional topological band with localized Majorana zero modes at the ends. Here, we study the effect of hexagonal warping and its corresponding symmetry-breaking effect on vortex phase transition. We perform both analytical calculations based on a semiclassical formula and numerical calculations based on full quantum mechanics using the Bogoliubov-de Gennes equation. We find that the hexagonal warping term extends the topological region of the vortex line as the chemical potential changes and leads to MZMs, even in the absence of topological surface states.展开更多
The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essenc...The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essence of intrinsic spin-orbit coupling is analytically calculated. We find that for each valley and spin, Cs is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states, consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin-orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin-orbit (RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin-orbit coupling, while the other two layers have zero intrinsic spin-orbit coupling. Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.展开更多
Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topologica...Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases.It is a fundamental challenge to realize quantum transition between Z_2 nontrivial topological insulator(TI) and topological crystalline insulator(TCI) in one material because Z_2 TI and TCI have different requirements on the number of band inversions. The Z_2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe_2 alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z_2 TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.展开更多
基金supported by the National Key R&D Program of China(2017YFA0303001 and 2016YFA0300201)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB25010100)+2 种基金the National Natural Science Foundation of China(11888101 and 11534010)Science Challenge Project(TZ2016004)Hefei Science Center CAS(2016HSC-IU001)
文摘Superconductivity beyond electron-phonon mechanism is always twisted with magnetism. Based on a new field-effect transistor with solid ion conductor as the gate dielectric(SIC-FET), we successfully achieve an electric-field-controlled phase transition between superconductor and ferromagnetic insulator in(Li,Fe)OHFeSe. A dome-shaped superconducting phase with optimal T_c of 43K is continuously tuned into a ferromagnetic insulating phase, which exhibits an electric-field-controlled quantum critical behavior. The origin of the ferromagnetism is ascribed to the order of the interstitial Fe ions expelled from the(Li,Fe)OH layers by gating-controlled Li injection. These surprising findings offer a unique platform to study the relationship between superconductivity and ferromagnetism in Fe-based superconductors. This work also demonstrates the superior performance of the SIC-FET in regulating physical properties of layered unconventional superconductors.
基金The project supported by the National Key Research and Development Program of China(Grant No.2018YFA0305703)Science Challenge Project(Grant No.TZ2016001)the National Natural Science Foundation of China(Grant Nos.U1930401 and 11874075)。
文摘High-pressure ultrafast dynamics,as a new crossed research direction,are sensitive to subtle non-equilibrium state changes that might be unresolved by equilibrium states measurements,providing crucial information for studying delicate phase transitions caused by complex interactions in Mott insulators.With time-resolved transient reflectivity measurements,we identified the new phases in the spin–orbit Mott insulator Sr_(3)Ir_(2)O_7 at 300 K that was previously unidentified using conventional approaches such as x-ray diffraction.Significant pressure-dependent variation of the amplitude and lifetime obtained by fitting the reflectivity?R/R reveal the changes of electronic structure caused by lattice distortions,and reflect the critical phenomena of phase transitions.Our findings demonstrate the importance of ultrafast nonequilibrium dynamics under extreme conditions for understanding the phase transition of Mott insulators.
基金supported by the National Natural Science Foundation of China(Grant No.11725415)
文摘In this pedagogically oriented review,we discuss the concept of Berry phase in quantum physics,paying particular attention to their manifestation in Bloch electrons.We have discussed,within the limited scope and passage,a few examples to illustrate the rich and fascinating manifestations of Berry phase in our understanding of many a physical property of a wide range of materials,including optoelectronic responses and quantum transport properties.It is also demonstrated that various topological phases of current interest are characterized by topological numbers,which are in fact incarnations of the Berry phase.A discussion of various techniques for gauge fixing,which may be important to the computation of Berry phase related properties,is also included.
文摘Porcelain cap and pin insulators are by far the most popular suspension insulators in high voltage(HV) distribution networks all around the world.Inspection and condition monitoring of HV insulators is also very important to the utility companies because of the critical and vital role that they play in distribution systems.In terms of safety, practicality and ease of use,remote detection methods are more popular among the line technicians.A new remote condition assessment method based on electromagnetic radiations from porcelain insulators is presented in this paper. In a lab environment,a string of two porcelain insulators is energized by a 45 kV transformer.Electromagnetic radiations due to the partial discharge activities inside the porcelain insulator are captured by passive sensors and antennas. Two cases of defective insulators on a two insulator string are studied here.The first case focuses on the effect of contaminated porcelain shells on radiation signature of partial discharges.A polluted porcelain shell with ESDD level of 0.03 mg/cm^2 was first tested.The second case studies the effect of cracks of an intentionally-cracked porcelain shell. The cracked insulator is also tested on a two insulator string.To compare the partial discharge radiation signature of different faulty insulators,phase resolved graphs were developed.The electromagnetic radiated signature of a polluted insulator and a cracked insulator was calculated and compared using phase resolved graphs.
文摘We present a detailed investigation of the specific heat of Ca3(Ru1-xMx)2O7 (M = Ti, Fe, Mn) single crystals. Depending on the dopant and doping level, three distinct regions are present: a quasi- two-dimensional metallic state with antiferromagnetic (AFM) order formed by ferromagnetic bilayers (AFM-b), a Mott insulating state with G-type AFM order (G-AFM), and a localized state with a mixed AFM-b and G-AFM phase. Our specific heat data provide deep insights into the Mort transitions induced by Ti and Mn doping. We observed not only an anomalous large mass enhancement, but also an additional term in the specific heat, i.e., C ∝ T2, in the localized region. The C ∝ T2 term is most likely due to long-wavelength excitations with both FM and AFM components. A decrease in the Debye temperature is observed in the G-type AFM region, indicating lattice softening associated with the Mott transition.
基金supported by the Air Force Office of Scientific Research(AFOSR)(Grant No.FA9550-14-1-0168)supported by the National Natural Science Foundation of China(Grant No.11674278)+1 种基金the National Basic Research Program of China(Grant No.2014CB921203)the CAS Center for Excellence in Topological Quantum Computation,and the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)
文摘In a superconducting topological insulator, a superconducting vortex line can trap a one-dimensional topological band with localized Majorana zero modes at the ends. Here, we study the effect of hexagonal warping and its corresponding symmetry-breaking effect on vortex phase transition. We perform both analytical calculations based on a semiclassical formula and numerical calculations based on full quantum mechanics using the Bogoliubov-de Gennes equation. We find that the hexagonal warping term extends the topological region of the vortex line as the chemical potential changes and leads to MZMs, even in the absence of topological surface states.
基金Majeed Ur Rehman acknowledges the support from the Chinese Academy of Sciences(CAS)and TWAS for his Ph.D.studies at the University of Science and Technology,China in the category of 2016 CAS-TWAS President’s Fellowship Awardee(Grant No.2016-156)
文摘The present study pertains to the trilayer graphene in the presence of spin orbit coupling to probe the quantum spin/valley Hall effect. The spin Chern-number Cs for energy-bands of trilayer graphene having the essence of intrinsic spin-orbit coupling is analytically calculated. We find that for each valley and spin, Cs is three times larger in trilayer graphene as compared to single layer graphene. Since the spin Chern-number corresponds to the number of edge states, consequently the trilayer graphene has edge states, three times more in comparison to single layer graphene. We also study the trilayer graphene in the presence of both electric-field and intrinsic spin-orbit coupling and investigate that the trilayer graphene goes through a phase transition from a quantum spin Hall state to a quantum valley Hall state when the strength of the electric field exceeds the intrinsic spin coupling strength. The robustness of the associated topological bulk-state of the trilayer graphene is evaluated by adding various perturbations such as Rashba spin-orbit (RSO) interaction αR, and exchange-magnetization M. In addition, we consider a theoretical model, where only one of the outer layers in trilayer graphene has the essence of intrinsic spin-orbit coupling, while the other two layers have zero intrinsic spin-orbit coupling. Although the first Chern number is non-zero for individual valleys of trilayer graphene in this model, however, we find that the system cannot be regarded as a topological insulator because the system as a whole is not gaped.
基金Supported by the Major State Basic Research Development Program of China under Grant No 2016YFB0700700the National Natural Science Foundation of China(NSFC)under Grants Nos 11634003,11474273,61121491 and U1530401+1 种基金supported by the National Young 1000 Talents Plansupported by the Youth Innovation Promotion Association of CAS(2017154)
文摘Topological phase transition in a single material usually refers to transitions between a trivial band insulator and a topological Dirac phase, and the transition may also occur between different classes of topological Dirac phases.It is a fundamental challenge to realize quantum transition between Z_2 nontrivial topological insulator(TI) and topological crystalline insulator(TCI) in one material because Z_2 TI and TCI have different requirements on the number of band inversions. The Z_2 TIs must have an odd number of band inversions over all the time-reversal invariant momenta, whereas the newly discovered TCIs, as a distinct class of the topological Dirac materials protected by the underlying crystalline symmetry, owns an even number of band inversions. Taking PbSnTe_2 alloy as an example, here we demonstrate that the atomic-ordering is an effective way to tune the symmetry of the alloy so that we can electrically switch between TCI phase and Z_2 TI phase in a single material. Our results suggest that the atomic-ordering provides a new platform towards the realization of reversibly switching between different topological phases to explore novel applications.