We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on ? with a random env...We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on ? with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.展开更多
The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control st...The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control strategy faces the challenge to strike a balance among these indexes.This research analyzes the fundamental mechanism of control phase deviation effects on skyhook damper control,groundhook damper control,and acceleration drive damper control.From the perspective of complex domain mechanical impedance with the support of the inertial suspension,a structure-based compensation approach is proposed to address for the control phase deviation.The simulation analysis demonstrates that the coordination of inertial suspension structure and control strategy can effectively enhance the comprehensive suspension performance across entire frequency range.Finally,a semi-active inertial suspension bench is implemented.The experimental results indicate that the suspension with the semi-active inertial suspension has outstanding vibration isolation ability,and enhances the suspension performance at ride comfort,suspension deflection,and road friendly significantly.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 10271020,10471012)SRF for ROCS, SEM (Grant No. [2005]564)
文摘We consider a branching random walk in random environments, where the particles are reproduced as a branching process with a random environment (in time), and move independently as a random walk on ? with a random environment (in locations). We obtain the asymptotic properties on the position of the rightmost particle at time n, revealing a phase transition phenomenon of the system.
基金supported by the National Natural Science Foundation of China(Grant No.52202471)the National Natural Science Foundation of China:Regional Innovation and Development Joint Fund(Grant No.U20A20331)+2 种基金Jiangsu Funding Program for Excellent Postdoctoral Talent(Grant No.2022ZB659)the National Natural Science Foundation of China(Grant No.52002156 and 52072157)the Postgraduate Education Reform Project of Jiangsu Province(Grant No.KYCX21_3333).
文摘The performance of vehicle suspension is evaluated based on three conflicting indexes:body acceleration,suspension deflection,and dynamic tire load,which vary across different frequency bands.The suspension control strategy faces the challenge to strike a balance among these indexes.This research analyzes the fundamental mechanism of control phase deviation effects on skyhook damper control,groundhook damper control,and acceleration drive damper control.From the perspective of complex domain mechanical impedance with the support of the inertial suspension,a structure-based compensation approach is proposed to address for the control phase deviation.The simulation analysis demonstrates that the coordination of inertial suspension structure and control strategy can effectively enhance the comprehensive suspension performance across entire frequency range.Finally,a semi-active inertial suspension bench is implemented.The experimental results indicate that the suspension with the semi-active inertial suspension has outstanding vibration isolation ability,and enhances the suspension performance at ride comfort,suspension deflection,and road friendly significantly.