期刊文献+

钻孔剪应变观测与构造有关的介质各向异性研究 被引量:5

Borehole shear strain observation and anisotropy caused by fault
原文传递
导出
摘要 本文应用中国大陆"十五"数字化观测网络实施的分量式钻孔应变观测资料,介绍了观测站的基本情况,分析了固体潮观测精度.利用固体潮理论反演剪应变观测数据的潮汐响应参数,获得了剪应变耦合系数和相位滞后参数,反演结果显示出现系统偏离的相位滞后最大可达10小时左右,而耦合系数总体偏小;并结合构造对有关剪应变系统偏离的机制进行了讨论.利用有限元数值模拟方法,通过采用均匀介质以及不同走向断层的模型设置,对剪应变理论值和观测值进行了模拟,进一步分析剪应变方向与断层走向的关系,数值模拟结果显示,当剪应变方向接近与断层走向平行时,相位滞后偏离较大,相位滞后最大可偏离11.5小时左右,而耦合系数相对较小,与反演结果基本吻合.本文最后对介质各向异性与构造的关系等有关问题进行了讨论. In this paper,using the data of borehole component strain-meter of China digital seismological observation network,the state of surveying sites are described and data precision are analyzed.Based on the tidal theory the coupling coefficients and phase lags of shear strain are inversed by using surveying data.The inversion results show that the systematic bias of maximum phase lag is up to about 10 hours,and overall coupling coefficients are small. The mechanism of the systematic bias of shear strain is discussed by combining the fault strike.The theoretical and observational shear strain were calculated based on the different finite element model,which using homogeneous medium and different strike fault with different viscosity coefficient.The relation between orientation of shear strain and fault strike is studied.The results show when the orientation of shear strain is close to the fault strike,the maximum phase lag is up to 11.5 hours,simultaneously the coupling coefficients are relative small,which are consistent with the inversion results approximately. This paper also discusses the relationship between media anisotropy,fault and other related issues.
出处 《地球物理学进展》 CSCD 北大核心 2014年第5期2461-2465,共5页 Progress in Geophysics
基金 地震行业科研专项(201108009-3)资助
关键词 钻孔应变 剪应变 相位滞后 耦合系数 系统偏离 断层 borehole strain shear strain phase lag coupling coefficient deviation fault
  • 相关文献

参考文献10

  • 1Cochran E S, Li Y G, Vidale J E. 2006. Anisotropy in the shallow crust observed around the San Andreas fault before and after the 2004 M 6.0 Parkfield earthquake[J]. Bulletin of the Seismological Society of America, 96(4B): S364-S375. 被引量:1
  • 2Gao Y, Crampin S. 2006. A stress-forecast earthquake (with hindsight), where migration of source earthquakes causes anomalies in shear-wave polarisations[J]. Tectonophysics, 426(3-4): 253-262. 被引量:1
  • 3Gao Y, Crampin S. 2008. Shear-wave splitting and Earthquake forecasting[J]. Terra Nova, 20(6): 440-448, doi:10.1111/j.1365-3121.2008.00836. 被引量:1
  • 4Gao Y, Wu J, Cai J A, et al. 2009. Shear-wave splitting in southeast of Cathaysia block[J]. South China Seismol., 13(2): 267-275. 被引量:1
  • 5Gladwin M T, Gwyther R L, Hart R, et al. 1987. Borehole tensor strain measurements in California[J]. J. Geophys. Res., 92(B8): 7981-7988. 被引量:1
  • 6Gwyther R L, Gladwin M T, Mee M, et al. 1996. Anomalous shear strain at Parkfield during 1993-94[J]. Geophysical Research Letters, 23(18): 2425-2428. 被引量:1
  • 7Lourenzetti E A, Tullis T E. 1989. Geodetic predictions of a strike-slip fault model: implications of intermediate and short-term earthquake prediction[J]. J. Geophys. Res., 94(B9): 12343-12361. 被引量:1
  • 8Nakata R, Ando R, Hori T, et al. 2011. Generation mechanism of slow earthquakes: Numerical analysis based on a dynamic model with brittle-ductile mixed fault heterogeneity[J]. J. Geophys. Res., 116(B8): B08308, doi:10.1029/2010JB008188. 被引量:1
  • 9Roeloffs E. 2000. The Parkfield, California earthquake experiment: An update in 2000[J]. J. Seismology, 79(9): 1226-1236. 被引量:1
  • 10Sacks I S, Suyehiro S, Evertson D W, et al. 1971. Sacks-Evertson strainmeter: its installation in Japan and some preliminary results concerning strain steps[J]. Pap. Met. Geophys., 22: 195-208. 被引量:1

同被引文献73

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部