期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Logistic回归的双层变量选择研究 被引量:13
1
作者 王小燕 方匡南 谢邦昌 《统计研究》 CSSCI 北大核心 2014年第9期107-112,共6页
变量选择是统计建模的重要环节,选择合适的变量可以建立结构简单、预测精准的稳健模型。本文在logistic回归下提出了新的双层变量选择惩罚方法——adaptive Sparse Group Lasso(adSGL),其独特之处在于基于变量的分组结构进行筛选,实现... 变量选择是统计建模的重要环节,选择合适的变量可以建立结构简单、预测精准的稳健模型。本文在logistic回归下提出了新的双层变量选择惩罚方法——adaptive Sparse Group Lasso(adSGL),其独特之处在于基于变量的分组结构进行筛选,实现了组内和组间双层选择。该方法的优点是对各单个系数和组系数采取不同程度的惩罚,避免了过度惩罚大系数,从而提高了模型的估计和预测精度。求解的难点是惩罚似然函数不是严格凸出的,因此本文基于组坐标下降法求解模型,并建立了调整参数的选取准则。模拟分析表明,对比现有代表性方法 Sparse Group Lasso、Group Lasso及Lasso,adSGL法不仅提高了双层选择精度,而且降低了模型误差。最后,本文将adSGL法应用于信用卡信用评分研究,与logistic回归相比,其具有更高的分类精度和稳健性。 展开更多
关键词 变量选择 群组变量 惩罚似然 信用评分
下载PDF
半参数广义线性模型的影响分析与异常点检验 被引量:7
2
作者 曾林蕊 朱仲义 茆诗松 《高校应用数学学报(A辑)》 CSCD 北大核心 2004年第3期323-332,共10页
统计诊断就是对统计推断方法解决问题的全过程进行诊断,而影响分析是统计诊断中十分重要的分支.本文针对半参数广义线性模型,证明了数据删除模型和均值漂移模型的等价性定理,给出了诸如广义Cook距离等诊断统计量并研究了异常点的Score... 统计诊断就是对统计推断方法解决问题的全过程进行诊断,而影响分析是统计诊断中十分重要的分支.本文针对半参数广义线性模型,证明了数据删除模型和均值漂移模型的等价性定理,给出了诸如广义Cook距离等诊断统计量并研究了异常点的Score检验统计量,最后通过实例验证了本文给出的诊断方法的有效性. 展开更多
关键词 惩罚似然 广义COOK距离 SCORE检验
下载PDF
自适应Lasso在Poisson对数线性回归模型下的性质 被引量:8
3
作者 崔静 郭鹏江 夏志明 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期565-568,共4页
目的研究自适应Lasso在Poisson对数线性模型下的性质。方法利用数学分析及概率论中的性质。结果证明了在Poisson对数线性模型下自适应Lasso估计量具有稀疏性和渐进正态性。结论自适应Lasso可以有效选择Poisson对数线性模型中的变量,并... 目的研究自适应Lasso在Poisson对数线性模型下的性质。方法利用数学分析及概率论中的性质。结果证明了在Poisson对数线性模型下自适应Lasso估计量具有稀疏性和渐进正态性。结论自适应Lasso可以有效选择Poisson对数线性模型中的变量,并同时估计变量系数。 展开更多
关键词 自适应Lasso Poisson对数线性模型 变量选择 惩罚似然 Oracle性质
下载PDF
面板数据模型的惩罚似然变量选择方法研究 被引量:7
4
作者 李扬 曾宪斌 《统计研究》 CSSCI 北大核心 2014年第3期83-89,共7页
本文针对面板数据模型的惩罚似然变量选择问题,比较研究了Lasso、Adaptive Lasso、Bridge和SCAD四种罚函数的渐近性质。模拟结果验证了在面板数据情况下,Adaptive Lasso、Bridge和SCAD的Oracle性质同样成立,且它们在变量选择准确性、参... 本文针对面板数据模型的惩罚似然变量选择问题,比较研究了Lasso、Adaptive Lasso、Bridge和SCAD四种罚函数的渐近性质。模拟结果验证了在面板数据情况下,Adaptive Lasso、Bridge和SCAD的Oracle性质同样成立,且它们在变量选择准确性、参数估计精度和模型预测精度三方面的效果都优于Lasso。为了合理选取调整参数,本文考虑AIC、BIC、GCV、Cp四种准则,通过模拟显示BIC和GCV的表现通常要优于AIC和Cp。作为实证研究,本文在面板数据框架下应用惩罚似然方法对上市公司市盈率影响因素进行选择,以期对股市投资者做出理性投资决策有一定指导价值。 展开更多
关键词 面板数据 变量选择 惩罚似然 调整参数
下载PDF
基于高维删失数据的分布式惩罚平均经验欧氏似然
5
作者 朱彦霖 于海生 《德州学院学报》 2023年第6期15-22,共8页
提出了一种基于高维删失数据的分布式惩罚平均经验欧氏似然方法(DPMEEL)。解决了经验似然在数据量较大时容易出现结果异常的问题,并且通过引入分布式估计的思想,大大提高了计算效率。通过研究表明,在某些条件下,分布式惩罚平均经验欧氏... 提出了一种基于高维删失数据的分布式惩罚平均经验欧氏似然方法(DPMEEL)。解决了经验似然在数据量较大时容易出现结果异常的问题,并且通过引入分布式估计的思想,大大提高了计算效率。通过研究表明,在某些条件下,分布式惩罚平均经验欧氏似然具有Oracle特性、渐进正态性,且其似然比的检验统计量服从卡方分布。模拟研究和实例分析说明了分布式惩罚平均经验欧氏似然具有较好的表现。 展开更多
关键词 经验欧氏似然 高维 惩罚似然 删失数据 分布式估计
下载PDF
用SCAD惩罚研究带遗传约束的Cox模型
6
作者 管锋 晏海青 《许昌学院学报》 CAS 2023年第5期14-18,共5页
用SCAD惩罚估计方法研究带遗传约束的Cox比例风险模型的模型选择与参数估计问题.首先根据分层交互的思想,给出带遗传约束的Cox模型.然后利用再参数化交互项系数的方法重新定义带遗传约束的Cox模型,运用SCAD惩罚偏似然估计方法进行变量... 用SCAD惩罚估计方法研究带遗传约束的Cox比例风险模型的模型选择与参数估计问题.首先根据分层交互的思想,给出带遗传约束的Cox模型.然后利用再参数化交互项系数的方法重新定义带遗传约束的Cox模型,运用SCAD惩罚偏似然估计方法进行变量选择和参数估计,变量选择的同时自动实现遗传约束,在给定的正则条件下证明了估计量具有Oracle性质.最后通过数值模拟验证了该方法的可行性. 展开更多
关键词 比例风险模型 遗传约束 惩罚似然 SCAD惩罚
下载PDF
发散维数SICA惩罚Cox回归模型的一种修正BIC调节参数选择器(英文) 被引量:4
7
作者 石跃勇 焦雨领 +1 位作者 严良 曹永秀 《数学杂志》 北大核心 2017年第4期723-730,共8页
本文研究了发散维数SICA惩罚Cox回归模型的调节参数选择问题,提出了一种修正的BIC调节参数选择器.在一定的正则条件下,证明了方法的模型选择相合性.数值结果表明提出的方法表现要优于GCV准则.
关键词 COX模型 修正BIC 惩罚似然 SICA惩罚 光滑拟牛顿
下载PDF
Selection of Fixed Effects in High-dimensional Generalized Linear Mixed Models
8
作者 Xi Yun ZHANG Zai Xing LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第6期995-1021,共27页
The selection of fixed effects is studied in high-dimensional generalized linear mixed models(HDGLMMs)without parametric distributional assumptions except for some moment conditions.The iterative-proxy-based penalized... The selection of fixed effects is studied in high-dimensional generalized linear mixed models(HDGLMMs)without parametric distributional assumptions except for some moment conditions.The iterative-proxy-based penalized quasi-likelihood method(IPPQL)is proposed to select the important fixed effects where an iterative proxy matrix of the covariance matrix of the random effects is constructed and the penalized quasi-likelihood is adapted.We establish the model selection consistency with oracle properties even for dimensionality of non-polynomial(NP)order of sample size.Simulation studies show that the proposed procedure works well.Besides,a real data is also analyzed. 展开更多
关键词 Fixed effects selection HDGLMMs penalized quasi-likelihood proxy covariance matrices theoretical properties
原文传递
半参数广义线性随机效应模型的影响分析 被引量:3
9
作者 曾林蕊 朱仲义 《数学物理学报(A辑)》 CSCD 北大核心 2007年第4期584-593,共10页
该文系统研究了半参数广义线性随机效应模型的统计诊断与影响分析方法,证明了数据删除模型和均值漂移模型的等价性定理,给出了广义Cook距离等诊断统计量及异常点的Score检验统计量并研究了该模型的局部影响分析,分别对加权扰动模型,响... 该文系统研究了半参数广义线性随机效应模型的统计诊断与影响分析方法,证明了数据删除模型和均值漂移模型的等价性定理,给出了广义Cook距离等诊断统计量及异常点的Score检验统计量并研究了该模型的局部影响分析,分别对加权扰动模型,响应变量扰动模型得到了影响距阵的计算公式,最后通过一个实例验证了文中给出诊断方法的有效性. 展开更多
关键词 惩罚似然 广义COOK距离 SCORE检验 影响矩阵 半参数
下载PDF
广义部分线性单指数模型的惩罚样条估计 被引量:2
10
作者 刘静 欧阳资生 吴喜之 《统计研究》 CSSCI 北大核心 2009年第8期102-112,共11页
本文讨论了指数族广义部分线性单指数模型(Generalized Partially Linear Single Index Models,GPLSIM)的惩罚样条迭代估计,提出了基于惩罚似然和一组预先取定的单指数参数向量α的初始估计的迭代估计算法。另外本文还通过一组模拟数据... 本文讨论了指数族广义部分线性单指数模型(Generalized Partially Linear Single Index Models,GPLSIM)的惩罚样条迭代估计,提出了基于惩罚似然和一组预先取定的单指数参数向量α的初始估计的迭代估计算法。另外本文还通过一组模拟数据的分析对所提出的迭代算法进行了验证。 展开更多
关键词 广义部分线性单指数模型 惩罚样条 惩罚似然
下载PDF
Variable Selection via Generalized SELO-Penalized Cox Regression Models 被引量:1
11
作者 SHI Yueyong XU Deyi +1 位作者 CAO Yongxiu JIAO Yuling 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2019年第2期709-736,共28页
The seamless-L_0(SELO) penalty is a smooth function that very closely resembles the L_0 penalty, which has been demonstrated theoretically and practically to be effective in nonconvex penalization for variable selecti... The seamless-L_0(SELO) penalty is a smooth function that very closely resembles the L_0 penalty, which has been demonstrated theoretically and practically to be effective in nonconvex penalization for variable selection. In this paper, the authors first generalize the SELO penalty to a class of penalties retaining good features of SELO, and then develop variable selection and parameter estimation in Cox models using the proposed generalized SELO(GSELO) penalized log partial likelihood(PPL) approach. The authors show that the GSELO-PPL procedure possesses the oracle property with a diverging number of predictors under certain mild, interpretable regularity conditions. The entire path of GSELO-PPL estimates can be efficiently computed through a smoothing quasi-Newton(SQN) with continuation algorithm. The authors propose a consistent modified BIC(MBIC) tuning parameter selector for GSELO-PPL, and show that under some regularity conditions, the GSELOPPL-MBIC procedure consistently identifies the true model. Simulation studies and real data analysis are conducted to evaluate the finite sample performance of the proposed method. 展开更多
关键词 CONTINUATION COX models GENERALIZED SELO modified BIC penalized likelihood smoothing QUASI-NEWTON
原文传递
Fiducial generalized p-values for testing zero-variance components in linear mixed-effects models 被引量:3
12
作者 Xinmin Li Haiyan Su Hua Liang 《Science China Mathematics》 SCIE CSCD 2018年第7期1303-1318,共16页
Linear mixed-effects models are widely used in analysis of longitudinal data. However, testing for zero-variance components of random effects has not been well-resolved in statistical literature, although some likelih... Linear mixed-effects models are widely used in analysis of longitudinal data. However, testing for zero-variance components of random effects has not been well-resolved in statistical literature, although some likelihood-based procedures have been proposed and studied. In this article, we propose a generalized p-value based method in coupling with fiducial inference to tackle this problem. The proposed method is also applied to test linearity of the nonparametric functions in additive models. We provide theoretical justifications and develop an implementation algorithm for the proposed method. We evaluate its finite-sample performance and compare it with that of the restricted likelihood ratio test via simulation experiments. We illustrate the proposed approach using an application from a nutritional study. 展开更多
关键词 fiducial distribution generalized pivotal quantity generalized test variable penalized spline additive models restricted likelihood ratio test structural equation zero-variance components
原文传递
Logistic模型中参数的自适应Lasso估计 被引量:3
13
作者 王娉 郭鹏江 夏志明 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第5期719-722,共4页
目的研究Logistic模型的参数估计。方法在L1罚中引用一个自适应的权,即自适应Las-so方法。结果自适应Lasso方法对Logistic模型同时进行了模型选择和参数估计。结论在一定的正则条件下,Logistic模型的自适应Lasso估计是满足Oracle性质的。
关键词 自适应Lasso LOGISTIC模型 Oracle性质 惩罚似然
下载PDF
Variable Selection in Joint Location, Scale and Skewness Models of the Skew-Normal Distribution 被引量:3
14
作者 LI Huiqiong WU Liucang MA Ting 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第3期694-709,共16页
Variable selection is an important research topic in modern statistics, traditional variable selection methods can only select the mean model and(or) the variance model, and cannot be used to select the joint mean, va... Variable selection is an important research topic in modern statistics, traditional variable selection methods can only select the mean model and(or) the variance model, and cannot be used to select the joint mean, variance and skewness models. In this paper, the authors propose the joint location, scale and skewness models when the data set under consideration involves asymmetric outcomes,and consider the problem of variable selection for our proposed models. Based on an efficient unified penalized likelihood method, the consistency and the oracle property of the penalized estimators are established. The authors develop the variable selection procedure for the proposed joint models, which can efficiently simultaneously estimate and select important variables in location model, scale model and skewness model. Simulation studies and body mass index data analysis are presented to illustrate the proposed methods. 展开更多
关键词 Joint location scale and skewness models penalized maximum likelihood estimation skew-normal distribution variable selection.
原文传递
Inconsistency of Classical Penalized Likelihood Approaches under Endogeneity
15
作者 Yawei He 《Journal of Applied Mathematics and Physics》 2020年第10期2335-2343,共9页
<div style="text-align:justify;"> With the high speed development of information technology, contemporary data from a variety of fields becomes extremely large. The number of features in many datasets ... <div style="text-align:justify;"> With the high speed development of information technology, contemporary data from a variety of fields becomes extremely large. The number of features in many datasets is well above the sample size and is called high dimensional data. In statistics, variable selection approaches are required to extract the efficacious information from high dimensional data. The most popular approach is to add a penalty function coupled with a tuning parameter to the log likelihood function, which is called penalized likelihood method. However, almost all of penalized likelihood approaches only consider noise accumulation and supurious correlation whereas ignoring the endogeneity which also appeared frequently in high dimensional space. In this paper, we explore the cause of endogeneity and its influence on penalized likelihood approaches. Simulations based on five classical pe-nalized approaches are provided to vindicate their inconsistency under endogeneity. The results show that the positive selection rate of all five approaches increased gradually but the false selection rate does not consistently decrease when endogenous variables exist, that is, they do not satisfy the selection consistency. </div> 展开更多
关键词 High Dimension ENDOGENEITY Feature Selection penalized likelihood
下载PDF
Tournament screening cum EBIC for feature selection with high-dimensional feature spaces
16
作者 CHEN ZeHua CHEN JiaHua 《Science China Mathematics》 SCIE 2009年第6期1327-1341,共15页
The feature selection characterized by relatively small sample size and extremely high-dimensional feature space is common in many areas of contemporary statistics. The high dimensionality of the feature space causes ... The feature selection characterized by relatively small sample size and extremely high-dimensional feature space is common in many areas of contemporary statistics. The high dimensionality of the feature space causes serious difficulties: (i) the sample correlations between features become high even if the features are stochastically independent; (ii) the computation becomes intractable. These difficulties make conventional approaches either inapplicable or inefficient. The reduction of dimensionality of the feature space followed by low dimensional approaches appears the only feasible way to tackle the problem. Along this line, we develop in this article a tournament screening cum EBIC approach for feature selection with high dimensional feature space. The procedure of tournament screening mimics that of a tournament. It is shown theoretically that the tournament screening has the sure screening property, a necessary property which should be satisfied by any valid screening procedure. It is demonstrated by numerical studies that the tournament screening cum EBIC approach enjoys desirable properties such as having higher positive selection rate and lower false discovery rate than other approaches. 展开更多
关键词 extended Bayes information criterion feature selection penalized likelihood reduction of dimensionality small-n-large-P sure screening 62F07 62P10
原文传递
Consistent tuning parameter selection in high-dimensional group-penalized regression
17
作者 Yaguang Li Yaohua Wu Baisuo Jin 《Science China Mathematics》 SCIE CSCD 2019年第4期751-770,共20页
Various forms of penalized estimators with good statistical and computational properties have been proposed for variable selection respecting the grouping structure in the variables. The attractive properties of these... Various forms of penalized estimators with good statistical and computational properties have been proposed for variable selection respecting the grouping structure in the variables. The attractive properties of these shrinkage and selection estimators, however, depend critically on the choice of the tuning parameter.One method for choosing the tuning parameter is via information criteria, such as the Bayesian information criterion(BIC). In this paper, we consider the problem of consistent tuning parameter selection in high dimensional generalized linear regression with grouping structures. We extend the results of the extended regularized information criterion(ERIC) to group selection methods involving concave penalties and then investigate the selection consistency with diverging variables in each group. Moreover, we show that the ERIC-type selector enables consistent identi?cation of the true model and that the resulting estimator possesses the oracle property even when the number of group is much larger than the sample size. Simulations show that the ERIC-type selector can signi?cantly outperform the BIC and cross-validation selectors when choosing true grouped variables,and an empirical example is given to illustrate its use. 展开更多
关键词 Bayesian information CRITERION GROUP selection penalized likelihood REGULARIZATION parameter ultra-high dimensionality
原文传递
L0 Regularization for the Estimation of Piecewise Constant Hazard Rates in Survival Analysis
18
作者 Olivier Bouaziz Grégory Nuel 《Applied Mathematics》 2017年第3期377-394,共18页
In a survival analysis context, we suggest a new method to estimate the piecewise constant hazard rate model. The method provides an automatic procedure to find the number and location of cut points and to estimate th... In a survival analysis context, we suggest a new method to estimate the piecewise constant hazard rate model. The method provides an automatic procedure to find the number and location of cut points and to estimate the hazard on each cut interval. Estimation is performed through a penalized likelihood using an adaptive ridge procedure. A bootstrap procedure is proposed in order to derive valid statistical inference taking both into account the variability of the estimate and the variability in the choice of the cut points. The new method is applied both to simulated data and to the Mayo Clinic trial on primary biliary cirrhosis. The algorithm implementation is seen to work well and to be of practical relevance. 展开更多
关键词 Adaptive RIDGE Procedure HAZARD Rate ESTIMATION penalized likelihood PIECEWISE CONSTANT HAZARD Survival Analysis
下载PDF
高维稀疏个性化推荐方法研究 被引量:1
19
作者 邵景钰 董枘朋 郑泽敏 《中国科学技术大学学报》 CAS CSCD 北大核心 2022年第3期32-43,69,70,共14页
考虑特征数据的多响应logit决策模型常用于个性化推荐问题,尤其在考虑参数矩阵的低秩结构时该方法表现较好。近年来有较多理论和算法上的进展,但是该决策模型中的参数估计在高维情形下仍然具有挑战性。因此,本文引入了基于特征数据的惩... 考虑特征数据的多响应logit决策模型常用于个性化推荐问题,尤其在考虑参数矩阵的低秩结构时该方法表现较好。近年来有较多理论和算法上的进展,但是该决策模型中的参数估计在高维情形下仍然具有挑战性。因此,本文引入了基于特征数据的惩罚似然方法,进而还原顾客、产品关于推荐结果的稀疏结构。提出的方法同时考虑低秩和稀疏结构,以降低模型复杂度,同时提升参数估计和模型预测的精度。新算法稀疏因子梯度下降(SFGD)用于参数矩阵的估计,该方法有较高的可解释性以及计算效率。作为一阶的方法,SFGD不用考虑Hessian矩阵的计算,在高维情形下有较好表现。模拟研究表明,SFGD在参数估计、稀疏还原以及算法平均regret上均优于现有方法。通过广告行为数据分析来验证了方法的有效性。 展开更多
关键词 个性化推荐 稀疏性 惩罚似然 因子梯度下降 低秩矩阵近似
下载PDF
基于连续X射线谱的CT重建算法仿真 被引量:2
20
作者 蔡彪 潘晋孝 陈平 《计算机仿真》 CSCD 北大核心 2011年第4期257-260,共4页
关于提高CT图像精度的问题,传统的CT重建算法都是基于X射线源是单色源的假设,忽略了X射线的多色性。直接用多色投影数据进行图像重建易产生金属、硬化等伪影,降低图像质量,影响CT值标定,从而影响医学或工业诊断。考虑到X射线能谱的连续... 关于提高CT图像精度的问题,传统的CT重建算法都是基于X射线源是单色源的假设,忽略了X射线的多色性。直接用多色投影数据进行图像重建易产生金属、硬化等伪影,降低图像质量,影响CT值标定,从而影响医学或工业诊断。考虑到X射线能谱的连续性,采用仿真手段实现连续X射线谱的统计重建。首先将连续X射线谱离散成若干单能谱,再根据待检工件的材质信息以及射线能量所对应的质量衰减系数,构建基于连续X射线谱的工件材质模型;最后利用多能统计重建算法对多能投影数据进行迭代重建。仿真结果表明,算法充分地利用了X射线的多能性,在一定程度上可以有效地降低图像伪影,提高CT重建图像质量。 展开更多
关键词 连续能谱 罚似然函数 伪影 图像重建
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部