期刊文献+

Inconsistency of Classical Penalized Likelihood Approaches under Endogeneity

Inconsistency of Classical Penalized Likelihood Approaches under Endogeneity
下载PDF
导出
摘要 <div style="text-align:justify;"> With the high speed development of information technology, contemporary data from a variety of fields becomes extremely large. The number of features in many datasets is well above the sample size and is called high dimensional data. In statistics, variable selection approaches are required to extract the efficacious information from high dimensional data. The most popular approach is to add a penalty function coupled with a tuning parameter to the log likelihood function, which is called penalized likelihood method. However, almost all of penalized likelihood approaches only consider noise accumulation and supurious correlation whereas ignoring the endogeneity which also appeared frequently in high dimensional space. In this paper, we explore the cause of endogeneity and its influence on penalized likelihood approaches. Simulations based on five classical pe-nalized approaches are provided to vindicate their inconsistency under endogeneity. The results show that the positive selection rate of all five approaches increased gradually but the false selection rate does not consistently decrease when endogenous variables exist, that is, they do not satisfy the selection consistency. </div> <div style="text-align:justify;"> With the high speed development of information technology, contemporary data from a variety of fields becomes extremely large. The number of features in many datasets is well above the sample size and is called high dimensional data. In statistics, variable selection approaches are required to extract the efficacious information from high dimensional data. The most popular approach is to add a penalty function coupled with a tuning parameter to the log likelihood function, which is called penalized likelihood method. However, almost all of penalized likelihood approaches only consider noise accumulation and supurious correlation whereas ignoring the endogeneity which also appeared frequently in high dimensional space. In this paper, we explore the cause of endogeneity and its influence on penalized likelihood approaches. Simulations based on five classical pe-nalized approaches are provided to vindicate their inconsistency under endogeneity. The results show that the positive selection rate of all five approaches increased gradually but the false selection rate does not consistently decrease when endogenous variables exist, that is, they do not satisfy the selection consistency. </div>
作者 Yawei He Yawei He(Department of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, China)
出处 《Journal of Applied Mathematics and Physics》 2020年第10期2335-2343,共9页 应用数学与应用物理(英文)
关键词 High Dimension ENDOGENEITY Feature Selection Penalized Likelihood High Dimension Endogeneity Feature Selection Penalized Likelihood
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部