以杂花苜蓿阿尔冈金(Medicago varia cv.ALgonquin)为试验材料,采用沙培方法,研究了外源一氧化氮(NO)供体硝普钠(SNP)对Pb2+处理下杂花苜蓿种子萌发及幼苗生理特性的影响。结果表明,与对照比,用SNP(100μmol/L)、低Pb2+浓度(250mg/L)和...以杂花苜蓿阿尔冈金(Medicago varia cv.ALgonquin)为试验材料,采用沙培方法,研究了外源一氧化氮(NO)供体硝普钠(SNP)对Pb2+处理下杂花苜蓿种子萌发及幼苗生理特性的影响。结果表明,与对照比,用SNP(100μmol/L)、低Pb2+浓度(250mg/L)和SNP与低Pb2+浓度组合(100μmol/L SNP+250mg/L)处理均增加了杂花苜蓿种子的发芽势、发芽率、胚芽胚根长,提高了幼苗脯氨酸、可溶性糖及可溶性蛋白质的含量,增强了根系活力,降低了MDA含量。高Pb2+浓度(500mg/L)处理不利于杂花苜蓿种子萌发和幼苗生长,且100μmol/L SNP不能缓解高铅胁迫对种子萌发及幼苗生长的抑制作用。展开更多
Cadmium (Cd2+) is one of the major widespread environmental pollutants, and can cause serious problems to all organisms. Lead (Pb2+) is another wide spread dangerous heavy metal. Tobacco is a popular growing eco...Cadmium (Cd2+) is one of the major widespread environmental pollutants, and can cause serious problems to all organisms. Lead (Pb2+) is another wide spread dangerous heavy metal. Tobacco is a popular growing economic crop in China. Most tobacco growing region soils contain excessive Cd2+ and Pb2+. To assess anatomic changes of tobacco roots under Cd2+, Pb2+, and Cd2++pb2+ chronic stress, a pot experiment was carried out in field. The tobacco seedlings with 6 leaves were transplanted to pots in which soil was placed. The amounts of Cd2+ added to soil were 0, 3, 6, 10, 30, 60, and 100 mg kg-1 dry soil. The amounts of Pb2+ added to soil were 0, 150, 300, 450, 600, 750, and 1 000 mg kg-1 dry soil. The amounts of Cd2++Pb2+ added to soil were 0+0, 3+150, 6+300, 10+450, 30+600, 60+750, and 100+1000 mg kg-1 dry soil. The contents of Cd2+ and Pb2+ in root systems were determined by inductively coupled plasma, and the anatomical structure was studied by method of paraffin sectioning. The results revealed that the amounts of exchangeable Cd2+ and Pb2+ and carbonate bound Cd2+ and Pbz+ in soil increased with the amounts of Cd2+ and Pb2+ added to soil, and the contents of both Cd2+ and Pb1+ in roots were significantly increased along with stress time and the amounts of Cd2+ and Pb2+ added to soil. The growing of tobacco in Cd2+ and Cd2++Pb2+ polluted soil for 50, 100, and 150 d resulted in some abnormal extemal morphological and anatomical changes in ripe region of lateral roots. All the abnormal roots had abnormal vascular cylinders, and the ratio of abnormal extemal morphological and anatomical changes of roots positively correlated with the Cd2+ contents in roots and stress time. While, there were no abnormal external morphological and anatomical changes of roots under Pb2+ stress. It was suggested that Cd2+ stress could cause abnormal anatomic changes of roots, but Pb2+ stress could not.展开更多
文摘以杂花苜蓿阿尔冈金(Medicago varia cv.ALgonquin)为试验材料,采用沙培方法,研究了外源一氧化氮(NO)供体硝普钠(SNP)对Pb2+处理下杂花苜蓿种子萌发及幼苗生理特性的影响。结果表明,与对照比,用SNP(100μmol/L)、低Pb2+浓度(250mg/L)和SNP与低Pb2+浓度组合(100μmol/L SNP+250mg/L)处理均增加了杂花苜蓿种子的发芽势、发芽率、胚芽胚根长,提高了幼苗脯氨酸、可溶性糖及可溶性蛋白质的含量,增强了根系活力,降低了MDA含量。高Pb2+浓度(500mg/L)处理不利于杂花苜蓿种子萌发和幼苗生长,且100μmol/L SNP不能缓解高铅胁迫对种子萌发及幼苗生长的抑制作用。
基金supported by the State Tobacco Mo-nopoly Administration of China (10200201005)
文摘Cadmium (Cd2+) is one of the major widespread environmental pollutants, and can cause serious problems to all organisms. Lead (Pb2+) is another wide spread dangerous heavy metal. Tobacco is a popular growing economic crop in China. Most tobacco growing region soils contain excessive Cd2+ and Pb2+. To assess anatomic changes of tobacco roots under Cd2+, Pb2+, and Cd2++pb2+ chronic stress, a pot experiment was carried out in field. The tobacco seedlings with 6 leaves were transplanted to pots in which soil was placed. The amounts of Cd2+ added to soil were 0, 3, 6, 10, 30, 60, and 100 mg kg-1 dry soil. The amounts of Pb2+ added to soil were 0, 150, 300, 450, 600, 750, and 1 000 mg kg-1 dry soil. The amounts of Cd2++Pb2+ added to soil were 0+0, 3+150, 6+300, 10+450, 30+600, 60+750, and 100+1000 mg kg-1 dry soil. The contents of Cd2+ and Pb2+ in root systems were determined by inductively coupled plasma, and the anatomical structure was studied by method of paraffin sectioning. The results revealed that the amounts of exchangeable Cd2+ and Pb2+ and carbonate bound Cd2+ and Pbz+ in soil increased with the amounts of Cd2+ and Pb2+ added to soil, and the contents of both Cd2+ and Pb1+ in roots were significantly increased along with stress time and the amounts of Cd2+ and Pb2+ added to soil. The growing of tobacco in Cd2+ and Cd2++Pb2+ polluted soil for 50, 100, and 150 d resulted in some abnormal extemal morphological and anatomical changes in ripe region of lateral roots. All the abnormal roots had abnormal vascular cylinders, and the ratio of abnormal extemal morphological and anatomical changes of roots positively correlated with the Cd2+ contents in roots and stress time. While, there were no abnormal external morphological and anatomical changes of roots under Pb2+ stress. It was suggested that Cd2+ stress could cause abnormal anatomic changes of roots, but Pb2+ stress could not.