The lossy nature of plasmonic wave due to absorption is shown to become an advantage for scaling-up a large area surface nanotexturing of transparent dielectrics and semiconductors by a self-organized sub-wavelength e...The lossy nature of plasmonic wave due to absorption is shown to become an advantage for scaling-up a large area surface nanotexturing of transparent dielectrics and semiconductors by a self-organized sub-wavelength energy deposition leading to an ablation pattern—ripples—using this plasmonic nano-printing.Irreversible nanoscale modifications are delivered by surface plasmon polariton(SPP)using:(i)fast scan and(ii)cylindrical focusing of femtosecond laser pulses for a high patterning throughput.The mechanism of ripple formation on ZnS dielectric is experimentally proven to occur via surface wave at the substrate–plasma interface.The line focusing increase the ordering quality of ripples and facilitates fabrication over wafer-sized areas within a practical time span.Nanoprinting using SPP is expected to open new applications in photo-catalysis,tribology,and solar light harvesting via localized energy deposition rather scattering used in photonic and sensing applications based on re-scattering of SPP modes into far-field modes.展开更多
Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry fe...Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry features,triply periodic minimal surface(TPMS)is emerging as an outstanding solution to constructing porous structures in recent years.However,many advantages of TPMS are not fully utilized in current research.Critical problems of the process from design,manufacturing to applications need further systematic and integrated discussions.In this work,a comprehensive overview of TPMS porous structures is provided.In order to generate the digital models of TPMS,the geometry design algorithms and performance control strategies are introduced according to diverse requirements.Based on that,precise additive manufacturing methods are summarized for fabricating physical TPMS products.Furthermore,actual multidisciplinary applications are presented to clarify the advantages and further potential of TPMS porous structures.Eventually,the existing problems and further research outlooks are discussed.展开更多
High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or micro...High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.展开更多
统计能量分析(statistical energy analysis,SEA)是复杂耦合系统中、高频动力学特性计算的有力工具.本文以波传播理论和SEA的基本原理为基础,研究周期加筋板中弯曲波传播特性.分析了周期结构的频率带隙特性和加强筋对板上弯曲波的滤波...统计能量分析(statistical energy analysis,SEA)是复杂耦合系统中、高频动力学特性计算的有力工具.本文以波传播理论和SEA的基本原理为基础,研究周期加筋板中弯曲波传播特性.分析了周期结构的频率带隙特性和加强筋对板上弯曲波的滤波特性对SEA计算结果的影响规律,发现经典SEA由于忽视了加筋板中物理上不相邻子系统间存在的能量隧穿效应,而导致响应预测结果产生最高近40 d B的误差.为了解决这一问题,本文应用高级统计能量分析(advanced statistical energy analysis,ASEA)方法,考虑能量在不相邻子系统间的传递、转移和转化的物理过程,从而大幅提高子系统响应的预测精度,将误差在大部分频段降低至小于5 d B.设计了模拟简支边界条件的加筋板振动测试实验装置,实验测试结果与有限元结果符合较好,对理论模型进行了验证.展开更多
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos...Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs hav...Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.展开更多
Hard and brittle materials have high hardness,excellent optical stability,chemical stability,and high thermal stability.Hence,they have huge application potential in various fields,such as optical components,substrate...Hard and brittle materials have high hardness,excellent optical stability,chemical stability,and high thermal stability.Hence,they have huge application potential in various fields,such as optical components,substrate materials,and quantum information,especially under harsh conditions,such as high temperatures and high pressures.Femtosecond laser direct writing technology has greatly promoted the development of femtosecond laser-induced periodic surface structure(Fs-LIPSS or LIPSS by a femtosecond laser)applications of hard and brittle materials due to its high precision,controllability,and three-dimensional processing ability.Thus far,LIPSSs have been widely used in material surface treatment,optoelectronic devices,and micromechanics.However,a consensus has not been reached regarding the formation mechanism of LIPSSs on hard and brittle materials.In this paper,three widely accepted LIPSS formation mechanisms are introduced,and the characteristics and applications of LIPSSs on diamonds,silicon,silicon carbide,and fused silica surfaces in recent years are summarized.In addition,the application prospects and challenges of LIPSSs on hard and brittle materials by a femtosecond laser are discussed.展开更多
The propagation characteristics of flexural waves in two-dimensional thin-plate phononic crystals (PCs) are analysed with the plane wave expansion (PWE) method to yield phase constant surfaces, which predict high ...The propagation characteristics of flexural waves in two-dimensional thin-plate phononic crystals (PCs) are analysed with the plane wave expansion (PWE) method to yield phase constant surfaces, which predict high directivity of flexural wave propagation for certain frequencies outside the band gap. The prediction is validated through the computation of the harmonic responses of a finite structure with 9 × 9 unit cells. The results indicate that directional propagation of flexural waves is an while specific effects of the directional propagation in inherent characteristic of two-dimensional thin-plate PCs a finite structure vary with the positions of excitations.展开更多
基金support by the National Key R&D Program of China(No.2017YFB1104600)the National Natural Science Foundation of China(NSFC)61590930,91423102,91323301,and 61435005+1 种基金to Gintas Slekys for the partnership project with Workshop of Photonics Ltd.on industrial femtosecond laser fabricationsupport via ARC Discovery DP170100131 grant。
文摘The lossy nature of plasmonic wave due to absorption is shown to become an advantage for scaling-up a large area surface nanotexturing of transparent dielectrics and semiconductors by a self-organized sub-wavelength energy deposition leading to an ablation pattern—ripples—using this plasmonic nano-printing.Irreversible nanoscale modifications are delivered by surface plasmon polariton(SPP)using:(i)fast scan and(ii)cylindrical focusing of femtosecond laser pulses for a high patterning throughput.The mechanism of ripple formation on ZnS dielectric is experimentally proven to occur via surface wave at the substrate–plasma interface.The line focusing increase the ordering quality of ripples and facilitates fabrication over wafer-sized areas within a practical time span.Nanoprinting using SPP is expected to open new applications in photo-catalysis,tribology,and solar light harvesting via localized energy deposition rather scattering used in photonic and sensing applications based on re-scattering of SPP modes into far-field modes.
基金financially supported by National Key R&D Program of China(No.2020YFC1107103)Key Research and Development Program of Zhejiang Province(No.2021C01107)+1 种基金China Postdoctoral Science Foundation(No.2020M681846)Science Fund for Creative Research Groups of National Natural Science Foundation of China(No.51821093).
文摘Inspired by natural porous architectures,numerous attempts have been made to generate porous structures.Owing to the smooth surfaces,highly interconnected porous architectures,and mathematical controllable geometry features,triply periodic minimal surface(TPMS)is emerging as an outstanding solution to constructing porous structures in recent years.However,many advantages of TPMS are not fully utilized in current research.Critical problems of the process from design,manufacturing to applications need further systematic and integrated discussions.In this work,a comprehensive overview of TPMS porous structures is provided.In order to generate the digital models of TPMS,the geometry design algorithms and performance control strategies are introduced according to diverse requirements.Based on that,precise additive manufacturing methods are summarized for fabricating physical TPMS products.Furthermore,actual multidisciplinary applications are presented to clarify the advantages and further potential of TPMS porous structures.Eventually,the existing problems and further research outlooks are discussed.
文摘High spatial frequency laser induced periodic surface structures(HSFLs)on silicon substrates are often developed on flat surfaces at low fluences near ablation threshold of 0.1 J/cm2,seldom on microstructures or microgrooves at relatively higher fluences above 1 J/cm^2.This work aims to enrich the variety of HSFLs-containing hierarchical microstructures,by femtosecond laser(pulse duration:457 fs,wavelength:1045 nm,and repetition rate:100 kHz)in liquids(water and acetone)at laser fluence of 1.7 J/cm^2.The period of Si-HSFLs in the range of 110–200 nm is independent of the scanning speeds(0.1,0.5,1 and 2 mm/s),line intervals(5,15 and 20μm)of scanning lines and scanning directions(perpendicular or parallel to light polarization direction).It is interestingly found that besides normal HSFLs whose orientations are perpendicular to the direction of light polarization,both clockwise or anticlockwise randomly tilted HSFLs with a maximal deviation angle of 50°as compared to those of normal HSFLSs are found on the microstructures with height gradients.Raman spectra and SEM characterization jointly clarify that surface melting and nanocapillary waves play important roles in the formation of Si-HSFLs.The fact that no HSFLs are produced by laser ablation in air indicates that moderate melting facilitated with ultrafast liquid cooling is beneficial for the formation of HSFLs by LALs.On the basis of our findings and previous reports,a synergistic formation mechanism for HSFLs at high fluence was proposed and discussed,including thermal melting with the concomitance of ultrafast cooling in liquids,transformation of the molten layers into ripples and nanotips by surface plasmon polaritons(SPP)and second-harmonic generation(SHG),and modulation of Si-HSFLs direction by both nanocapillary waves and the localized electric field coming from the excited large Si particles.
文摘统计能量分析(statistical energy analysis,SEA)是复杂耦合系统中、高频动力学特性计算的有力工具.本文以波传播理论和SEA的基本原理为基础,研究周期加筋板中弯曲波传播特性.分析了周期结构的频率带隙特性和加强筋对板上弯曲波的滤波特性对SEA计算结果的影响规律,发现经典SEA由于忽视了加筋板中物理上不相邻子系统间存在的能量隧穿效应,而导致响应预测结果产生最高近40 d B的误差.为了解决这一问题,本文应用高级统计能量分析(advanced statistical energy analysis,ASEA)方法,考虑能量在不相邻子系统间的传递、转移和转化的物理过程,从而大幅提高子系统响应的预测精度,将误差在大部分频段降低至小于5 d B.设计了模拟简支边界条件的加筋板振动测试实验装置,实验测试结果与有限元结果符合较好,对理论模型进行了验证.
文摘Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金This work was supported by the National Natural Science Foundation of China(12074123,11804227,91950112)the Ministry of Science and Technology of China(Grant No.2021YFA1401100)the Foundation of‘Manufacturing beyond limits’of Shanghai.
文摘Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.
基金This work was supported by the National Natural Science Foundation of China(Grant No.62004059)the Natural Science Research Foundation of Hebei University of Technology(Grant No.BKYXX2203)+2 种基金the Natural Science Foundation of Hebei Province(Grant Nos.F2021202047 and F2021202002)the Funding Projects for the Introduction of Overseas Staff of Hebei Province(Grant No.C20210334)the Key Laboratory Fund Project(Grant No.2021JCJQLB055004).
文摘Hard and brittle materials have high hardness,excellent optical stability,chemical stability,and high thermal stability.Hence,they have huge application potential in various fields,such as optical components,substrate materials,and quantum information,especially under harsh conditions,such as high temperatures and high pressures.Femtosecond laser direct writing technology has greatly promoted the development of femtosecond laser-induced periodic surface structure(Fs-LIPSS or LIPSS by a femtosecond laser)applications of hard and brittle materials due to its high precision,controllability,and three-dimensional processing ability.Thus far,LIPSSs have been widely used in material surface treatment,optoelectronic devices,and micromechanics.However,a consensus has not been reached regarding the formation mechanism of LIPSSs on hard and brittle materials.In this paper,three widely accepted LIPSS formation mechanisms are introduced,and the characteristics and applications of LIPSSs on diamonds,silicon,silicon carbide,and fused silica surfaces in recent years are summarized.In addition,the application prospects and challenges of LIPSSs on hard and brittle materials by a femtosecond laser are discussed.
文摘The propagation characteristics of flexural waves in two-dimensional thin-plate phononic crystals (PCs) are analysed with the plane wave expansion (PWE) method to yield phase constant surfaces, which predict high directivity of flexural wave propagation for certain frequencies outside the band gap. The prediction is validated through the computation of the harmonic responses of a finite structure with 9 × 9 unit cells. The results indicate that directional propagation of flexural waves is an while specific effects of the directional propagation in inherent characteristic of two-dimensional thin-plate PCs a finite structure vary with the positions of excitations.