In this paper the homogenization method is improved to develop one kind of dual coupled approximate method, which reflects both the macro-scope properties of whole structure and its loadings, and micro-scope configura...In this paper the homogenization method is improved to develop one kind of dual coupled approximate method, which reflects both the macro-scope properties of whole structure and its loadings, and micro-scope configuration properties of composite materials. The boundary value problem of woven membrane is considered, the dual asymptotic expression of the exact solution is given, and its approximation and error estimation are discussed. Finally the numerical example shows the effectiveness of this dual coupled method.展开更多
Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in te...Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in terms of both accuracy and efficiency.Potentially,the optimization problem in the RFM is more difficult to solve than those that arise in traditional methods.Unlike the broader machine-learning research,which frequently targets tasks within the low-precision regime,our study focuses on the high-precision regime crucial for solving PDEs.In this work,we study this problem from the following aspects:(i)we analyze the coeffcient matrix that arises in the RFM by studying the distribution of singular values;(ii)we investigate whether the continuous training causes the overfitting issue;(ii)we test direct and iterative methods as well as randomized methods for solving the optimization problem.Based on these results,we find that direct methods are superior to other methods if memory is not an issue,while iterative methods typically have low accuracy and can be improved by preconditioning to some extent.展开更多
This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering a...This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.展开更多
In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct effi...In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct efficient and accurate time discretization scheme for a large class of Hamiltonian partial differential equations(PDEs).The proposed scheme is a linear system,and can be solved more efficient than the original energy-preserving ex-ponential integrator scheme which usually needs nonlinear iterations.Various experiments are performed to verify the conservation,efficiency and good performance at relatively large time step in long time computations.展开更多
The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The stee...The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The steepest descent direction and the Armijo-type step-size search rules are adopted in Li and Zhou(2002)and play a significant role in the performance and convergence analysis of traditional LMMs.In this paper,a new algorithm framework of the LMMs is established based on general descent directions and two normalized(strong)Wolfe-Powell-type step-size search rules.The corresponding algorithm framework,named the normalized Wolfe-Powell-type LMM(NWP-LMM),is introduced with its feasibility and global convergence rigorously justified for general descent directions.As a special case,the global convergence of the NWP-LMM combined with the preconditioned steepest descent(PSD)directions is also verified.Consequently,it extends the framework of traditional LMMs.In addition,conjugate-gradient-type(CG-type)descent directions are utilized to speed up the NWP-LMM.Finally,extensive numerical results for several semilinear elliptic PDEs are reported to profile their multiple unstable solutions and compared with different algorithms in the LMM’s family to indicate the effectiveness and robustness of our algorithms.In practice,the NWP-LMM combined with the CG-type direction performs much better than its known LMM companions.展开更多
First-order proximal methods that solve linear and bilinear elliptic optimal control problems with a sparsity cost functional are discussed. In particular, fast convergence of these methods is proved. For benchmarking...First-order proximal methods that solve linear and bilinear elliptic optimal control problems with a sparsity cost functional are discussed. In particular, fast convergence of these methods is proved. For benchmarking purposes, inexact proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of proximal schemes applied to infinite-dimensional elliptic optimal control problems and to validate the theoretical estimates.展开更多
Based on a subspace method and a linear approximation method,a convex algorithm is designed to solve a kind of non-convex PDE constrained fractional optimization problem in this paper.This PDE constrained problem is a...Based on a subspace method and a linear approximation method,a convex algorithm is designed to solve a kind of non-convex PDE constrained fractional optimization problem in this paper.This PDE constrained problem is an infinitedimensional Hermitian eigenvalue optimization problem with non-convex and low regularity.Usually,such a continuous optimization problem can be transformed into a large-scale discrete optimization problem by using the finite element methods.We use a subspace technique to reduce the scale of discrete problem,which is really effective to deal with the large-scale problem.To overcome the difficulties caused by the low regularity and non-convexity,we creatively introduce several new artificial variables to transform the non-convex problem into a convex linear semidefinite programming.By introducing linear approximation vectors,this linear semidefinite programming can be approximated by a very simple linear relaxation problem.Moreover,we theoretically prove this approximation.Our proposed algorithm is used to optimize the photonic band gaps of two-dimensional Gallium Arsenide-based photonic crystals as an application.The results of numerical examples show the effectiveness of our proposed algorithm,while they also provide several optimized photonic crystal structures with a desired wide-band-gap.In addition,our proposed algorithm provides a technical way for solving a kind of PDE constrained fractional optimization problems with a generalized eigenvalue constraint.展开更多
In this work we consider the problem of shape reconstruction from an unorganized data set which has many important applications in medical imaging, scientific computing, reverse engineering and geometric modelling. Th...In this work we consider the problem of shape reconstruction from an unorganized data set which has many important applications in medical imaging, scientific computing, reverse engineering and geometric modelling. The reconstructed surface is obtained by continuously deforming an initial surface following the Partial Differential Equation (PDE)-based diffusion model derived by a minimal volume-like variational formulation. The evolution is driven both by the distance from the data set and by the curvature analytically computed by it. The distance function is computed by implicit local interpolants defined in terms of radial basis functions. Space discretization of the PDE model is obtained by finite co-volume schemes and semi-implicit approach is used in time/scale. The use of a level set method for the numerical computation of the surface reconstruction allows us to handle complex geometry and even changing topology,without the need of user-interaction. Numerical examples demonstrate the ability of the proposed method to produce high quality reconstructions. Moreover, we show the effectiveness of the new approach to solve hole filling problems and Boolean operations between different data sets.展开更多
A second order accurate method in the infinity norm is proposed for general three dimensional anisotropic elliptic interface problems in which the solution and its derivatives,the coefficients,and source terms all can...A second order accurate method in the infinity norm is proposed for general three dimensional anisotropic elliptic interface problems in which the solution and its derivatives,the coefficients,and source terms all can have finite jumps across one or several arbitrary smooth interfaces.The method is based on the 2D finite element-finite difference(FEFD)method but with substantial differences in method derivation,implementation,and convergence analysis.One of challenges is to derive 3D interface relations since there is no invariance anymore under coordinate system transforms for the partial differential equations and the jump conditions.A finite element discretization whose coefficient matrix is a symmetric semi-positive definite is used away from the interface;and the maximum preserving finite difference discretization whose coefficient matrix part is an M-matrix is constructed at irregular elements where the interface cuts through.We aim to get a sharp interface method that can have second order accuracy in the point-wise norm.We show the convergence analysis by splitting errors into several parts.Nontrivial numerical examples are presented to confirm the convergence analysis.展开更多
In this paper, the nonlinear Hunter–Saxton equation, which is a famous partial differential equation,is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized f...In this paper, the nonlinear Hunter–Saxton equation, which is a famous partial differential equation,is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions(B-GFCF) collocation method. First, using the quasilinearization method,the equation is converted into a sequence of linear partial differential equations(LPD), and then these LPDs are solved using the B-GFCF collocation method. A very good approximation of solutions is obtained, and comparisons show that the obtained results are more accurate than the results of other researchers.展开更多
Cancer belongs to the class of discascs which is symbolized by out of control cells growth.These cells affect DNAs and damage them.There exist many treatments avail-able in medical science as radiation therapy,targete...Cancer belongs to the class of discascs which is symbolized by out of control cells growth.These cells affect DNAs and damage them.There exist many treatments avail-able in medical science as radiation therapy,targeted therapy,surgery,palliative care and chemotherapy.Cherotherapy is one of the most popular treatments which depends on the type,location and grade of cancer.In this paper,we are working on modeling and prediction of the effect of chemotherapy on cancer cells using a fractional differen-tial equation by using the differential operator in Caputos sense.The presented model depicts the interaction between tumor,norrnal and immune cells in a tumor by using a system of four coupled fractional partial differential equations(PDEs).For this system,initial conditions of tumor cells and dimensions are taken in such a way that tumor is spread out enough in size and can be detected easily with the clinical machines.An operational matrix method with Genocchi polynomials is applied to study this system of fractional PDFs(FPDEs).An operational matrix for fract.ional differentiation is derived.Applying the collocation method and using this matrix,the nonlinear system is reduced to a system of algebraic equations,which can be solved using Newton iteration method.The salient features of this paper are the pictorial presentations of the numerical solution of the concerned equation for different particular cases to show the effect of fractional exponent on diffusive nature of immune cells,tumor cells,normal cells and chemother-apeutic drug and depict the interaction among immune cells,normal cells and tumor cells in a tumor site.展开更多
Image restoration is an image processing technology with great practical value in the field of computer vision.It is a computer technology that estimates the image information of the damaged area according to the resi...Image restoration is an image processing technology with great practical value in the field of computer vision.It is a computer technology that estimates the image information of the damaged area according to the residual image information of the damaged image and carries out automatic repair.This article firstly classify and summarize image restoration algorithms,and describe recent advances in the research respectively from three aspects including image restoration based on partial differential equation,based on the texture of image restoration and based on deep learning,then make the brief analysis of digital image restoration of subjective and objective evaluation method,and briefly summarize application of digital image restoration technique in the future and prospects,provide direction for the research on image after repair.展开更多
An object-oriented approach is taken to the problem of formulating portable, easy-to-modify PDE solvers for realistic problems in three space dimensions. The resulting software library, Cogito, contains tools for writ...An object-oriented approach is taken to the problem of formulating portable, easy-to-modify PDE solvers for realistic problems in three space dimensions. The resulting software library, Cogito, contains tools for writing programs to be executed on MIMD computers with distributed memory. Difference methods on composite, structured grids are supported. Most of the Cogito classes have been implemented in Fortran 77, in such a way that the object-oriented design is visible. With respect to parallel performance, these tools yield code that is comparable to parallel solvers written in plain Fortran 77. The resulting programs are can be executed without modification on a large number of multicomputer platforms, and also on serial computers. The uppermost level of abstraction in Cogito concerns the problem of decoupling the numerical method from the PDE problem. The validity of these tools has been preliminarily demonstrated with a C++ implementation for one-dimensional problems.展开更多
文摘In this paper the homogenization method is improved to develop one kind of dual coupled approximate method, which reflects both the macro-scope properties of whole structure and its loadings, and micro-scope configuration properties of composite materials. The boundary value problem of woven membrane is considered, the dual asymptotic expression of the exact solution is given, and its approximation and error estimation are discussed. Finally the numerical example shows the effectiveness of this dual coupled method.
基金supported by the NSFC Major Research Plan--Interpretable and Generalpurpose Next-generation Artificial Intelligence(No.92370205).
文摘Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in terms of both accuracy and efficiency.Potentially,the optimization problem in the RFM is more difficult to solve than those that arise in traditional methods.Unlike the broader machine-learning research,which frequently targets tasks within the low-precision regime,our study focuses on the high-precision regime crucial for solving PDEs.In this work,we study this problem from the following aspects:(i)we analyze the coeffcient matrix that arises in the RFM by studying the distribution of singular values;(ii)we investigate whether the continuous training causes the overfitting issue;(ii)we test direct and iterative methods as well as randomized methods for solving the optimization problem.Based on these results,we find that direct methods are superior to other methods if memory is not an issue,while iterative methods typically have low accuracy and can be improved by preconditioning to some extent.
基金funded by the National Key Research and Development Program of China(No.2021YFB2600704)the National Natural Science Foundation of China(No.52171272)the Significant Science and Technology Project of the Ministry of Water Resources of China(No.SKS-2022112).
文摘This paper presents an efficient numerical technique for solving multi-term linear systems of fractional ordinary differential equations(FODEs)which have been widely used in modeling various phenomena in engineering and science.An approximate solution of the system is sought in the formof the finite series over the Müntz polynomials.By using the collocation procedure in the time interval,one gets the linear algebraic system for the coefficient of the expansion which can be easily solved numerically by a standard procedure.This technique also serves as the basis for solving the time-fractional partial differential equations(PDEs).The modified radial basis functions are used for spatial approximation of the solution.The collocation in the solution domain transforms the equation into a system of fractional ordinary differential equations similar to the one mentioned above.Several examples have verified the performance of the proposed novel technique with high accuracy and efficiency.
基金supported by the National Natural Science Foundation of China(Grant Nos.12171245,11971416,11971242,12301508)by the Natural Science Foundation of Henan Province(Grant No.222300420280)+1 种基金by the Natural Science Foundation of Hunan Province(Grant No.2023JJ40656)by the Scientific Research Fund of Xuchang University(Grant No.2024ZD010).
文摘In the paper,we propose a novel linearly implicit structure-preserving algorithm,which is derived by combing the invariant energy quadratization approach with the exponential time differencing method,to construct efficient and accurate time discretization scheme for a large class of Hamiltonian partial differential equations(PDEs).The proposed scheme is a linear system,and can be solved more efficient than the original energy-preserving ex-ponential integrator scheme which usually needs nonlinear iterations.Various experiments are performed to verify the conservation,efficiency and good performance at relatively large time step in long time computations.
基金supported by National Natural Science Foundation of China(Grant Nos.12171148 and 11771138)the Construct Program of the Key Discipline in Hunan Province.Wei Liu was supported by National Natural Science Foundation of China(Grant Nos.12101252 and 11971007)+2 种基金supported by National Natural Science Foundation of China(Grant No.11901185)National Key Research and Development Program of China(Grant No.2021YFA1001300)the Fundamental Research Funds for the Central Universities(Grant No.531118010207).
文摘The local minimax method(LMM)proposed by Li and Zhou(2001,2002)is an efficient method to solve nonlinear elliptic partial differential equations(PDEs)with certain variational structures for multiple solutions.The steepest descent direction and the Armijo-type step-size search rules are adopted in Li and Zhou(2002)and play a significant role in the performance and convergence analysis of traditional LMMs.In this paper,a new algorithm framework of the LMMs is established based on general descent directions and two normalized(strong)Wolfe-Powell-type step-size search rules.The corresponding algorithm framework,named the normalized Wolfe-Powell-type LMM(NWP-LMM),is introduced with its feasibility and global convergence rigorously justified for general descent directions.As a special case,the global convergence of the NWP-LMM combined with the preconditioned steepest descent(PSD)directions is also verified.Consequently,it extends the framework of traditional LMMs.In addition,conjugate-gradient-type(CG-type)descent directions are utilized to speed up the NWP-LMM.Finally,extensive numerical results for several semilinear elliptic PDEs are reported to profile their multiple unstable solutions and compared with different algorithms in the LMM’s family to indicate the effectiveness and robustness of our algorithms.In practice,the NWP-LMM combined with the CG-type direction performs much better than its known LMM companions.
文摘First-order proximal methods that solve linear and bilinear elliptic optimal control problems with a sparsity cost functional are discussed. In particular, fast convergence of these methods is proved. For benchmarking purposes, inexact proximal schemes are compared to an inexact semismooth Newton method. Results of numerical experiments are presented to demonstrate the computational effectiveness of proximal schemes applied to infinite-dimensional elliptic optimal control problems and to validate the theoretical estimates.
基金supported by National Natural Science Foundation of China(Grant Nos.12171052 and 11871115)BUPT Excellent Ph.D.Students Foundation(Grant No.CX2021320).
文摘Based on a subspace method and a linear approximation method,a convex algorithm is designed to solve a kind of non-convex PDE constrained fractional optimization problem in this paper.This PDE constrained problem is an infinitedimensional Hermitian eigenvalue optimization problem with non-convex and low regularity.Usually,such a continuous optimization problem can be transformed into a large-scale discrete optimization problem by using the finite element methods.We use a subspace technique to reduce the scale of discrete problem,which is really effective to deal with the large-scale problem.To overcome the difficulties caused by the low regularity and non-convexity,we creatively introduce several new artificial variables to transform the non-convex problem into a convex linear semidefinite programming.By introducing linear approximation vectors,this linear semidefinite programming can be approximated by a very simple linear relaxation problem.Moreover,we theoretically prove this approximation.Our proposed algorithm is used to optimize the photonic band gaps of two-dimensional Gallium Arsenide-based photonic crystals as an application.The results of numerical examples show the effectiveness of our proposed algorithm,while they also provide several optimized photonic crystal structures with a desired wide-band-gap.In addition,our proposed algorithm provides a technical way for solving a kind of PDE constrained fractional optimization problems with a generalized eigenvalue constraint.
基金supported by PRIN-MIUR-Cofin 2006,project,by"Progetti Strategici EF2006"University of Bologna,and by University of Bologna"Funds for selected research topics"
文摘In this work we consider the problem of shape reconstruction from an unorganized data set which has many important applications in medical imaging, scientific computing, reverse engineering and geometric modelling. The reconstructed surface is obtained by continuously deforming an initial surface following the Partial Differential Equation (PDE)-based diffusion model derived by a minimal volume-like variational formulation. The evolution is driven both by the distance from the data set and by the curvature analytically computed by it. The distance function is computed by implicit local interpolants defined in terms of radial basis functions. Space discretization of the PDE model is obtained by finite co-volume schemes and semi-implicit approach is used in time/scale. The use of a level set method for the numerical computation of the surface reconstruction allows us to handle complex geometry and even changing topology,without the need of user-interaction. Numerical examples demonstrate the ability of the proposed method to produce high quality reconstructions. Moreover, we show the effectiveness of the new approach to solve hole filling problems and Boolean operations between different data sets.
基金Zhilin Li is partially supported by Simon’s grant 633724.Xiufang Feng is partially supported by CNSF Grant No.11961054Baiying Dong is partially supported by Ningxia Natural Science Foundation of China Grant No.2021AAC03234.
文摘A second order accurate method in the infinity norm is proposed for general three dimensional anisotropic elliptic interface problems in which the solution and its derivatives,the coefficients,and source terms all can have finite jumps across one or several arbitrary smooth interfaces.The method is based on the 2D finite element-finite difference(FEFD)method but with substantial differences in method derivation,implementation,and convergence analysis.One of challenges is to derive 3D interface relations since there is no invariance anymore under coordinate system transforms for the partial differential equations and the jump conditions.A finite element discretization whose coefficient matrix is a symmetric semi-positive definite is used away from the interface;and the maximum preserving finite difference discretization whose coefficient matrix part is an M-matrix is constructed at irregular elements where the interface cuts through.We aim to get a sharp interface method that can have second order accuracy in the point-wise norm.We show the convergence analysis by splitting errors into several parts.Nontrivial numerical examples are presented to confirm the convergence analysis.
文摘In this paper, the nonlinear Hunter–Saxton equation, which is a famous partial differential equation,is solved by using a hybrid numerical method based on the quasilinearization method and the bivariate generalized fractional order of the Chebyshev functions(B-GFCF) collocation method. First, using the quasilinearization method,the equation is converted into a sequence of linear partial differential equations(LPD), and then these LPDs are solved using the B-GFCF collocation method. A very good approximation of solutions is obtained, and comparisons show that the obtained results are more accurate than the results of other researchers.
文摘Cancer belongs to the class of discascs which is symbolized by out of control cells growth.These cells affect DNAs and damage them.There exist many treatments avail-able in medical science as radiation therapy,targeted therapy,surgery,palliative care and chemotherapy.Cherotherapy is one of the most popular treatments which depends on the type,location and grade of cancer.In this paper,we are working on modeling and prediction of the effect of chemotherapy on cancer cells using a fractional differen-tial equation by using the differential operator in Caputos sense.The presented model depicts the interaction between tumor,norrnal and immune cells in a tumor by using a system of four coupled fractional partial differential equations(PDEs).For this system,initial conditions of tumor cells and dimensions are taken in such a way that tumor is spread out enough in size and can be detected easily with the clinical machines.An operational matrix method with Genocchi polynomials is applied to study this system of fractional PDFs(FPDEs).An operational matrix for fract.ional differentiation is derived.Applying the collocation method and using this matrix,the nonlinear system is reduced to a system of algebraic equations,which can be solved using Newton iteration method.The salient features of this paper are the pictorial presentations of the numerical solution of the concerned equation for different particular cases to show the effect of fractional exponent on diffusive nature of immune cells,tumor cells,normal cells and chemother-apeutic drug and depict the interaction among immune cells,normal cells and tumor cells in a tumor site.
基金The research is supported by National Natural Science Foundation of China(Grant No.51874300)the National Natural Science Foundation of China and Shanxi Provincial People’s Government Jointly Funded Project of China for Coal Base and Low Carbon(Grant No.U1510115)+2 种基金National Natural Science Foundation of China(51104157)the Qing Lan Project,the China Postdoctoral Science Foundation(Grant No.2013T60574)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20170074).
文摘Image restoration is an image processing technology with great practical value in the field of computer vision.It is a computer technology that estimates the image information of the damaged area according to the residual image information of the damaged image and carries out automatic repair.This article firstly classify and summarize image restoration algorithms,and describe recent advances in the research respectively from three aspects including image restoration based on partial differential equation,based on the texture of image restoration and based on deep learning,then make the brief analysis of digital image restoration of subjective and objective evaluation method,and briefly summarize application of digital image restoration technique in the future and prospects,provide direction for the research on image after repair.
文摘An object-oriented approach is taken to the problem of formulating portable, easy-to-modify PDE solvers for realistic problems in three space dimensions. The resulting software library, Cogito, contains tools for writing programs to be executed on MIMD computers with distributed memory. Difference methods on composite, structured grids are supported. Most of the Cogito classes have been implemented in Fortran 77, in such a way that the object-oriented design is visible. With respect to parallel performance, these tools yield code that is comparable to parallel solvers written in plain Fortran 77. The resulting programs are can be executed without modification on a large number of multicomputer platforms, and also on serial computers. The uppermost level of abstraction in Cogito concerns the problem of decoupling the numerical method from the PDE problem. The validity of these tools has been preliminarily demonstrated with a C++ implementation for one-dimensional problems.