病程相关蛋白10(pathogenesis related protein 10,PR10)在植物抵抗病毒侵染中发挥重要作用。前期以甘蔗线条花叶病毒(Sugarcane streak mosaic virus,SCSMV)编码的RNA沉默抑制子P1为诱饵,筛选获得一个甘蔗ShPR10蛋白。为探究ShPR10在...病程相关蛋白10(pathogenesis related protein 10,PR10)在植物抵抗病毒侵染中发挥重要作用。前期以甘蔗线条花叶病毒(Sugarcane streak mosaic virus,SCSMV)编码的RNA沉默抑制子P1为诱饵,筛选获得一个甘蔗ShPR10蛋白。为探究ShPR10在甘蔗应答SCSMV侵染过程中的功能,利用同源克隆技术克隆甘蔗ShPR10基因并对其编码蛋白进行生物信息学分析,利用绿色荧光蛋白融合表达法分析ShPR10蛋白的亚细胞定位,采用酵母双杂交和双分子荧光互补技术验证ShPR10与SCSMV P1的互作关系,采用农杆菌共浸润瞬时表达系统和Western blot技术分析ShPR10对P1沉默抑制子活性的影响。结果显示,甘蔗ShPR10基因开放阅读框全长570 bp,编码一个不稳定亲水蛋白,蛋白分子量为21.17 kD,等电点为4.77,含有一个P-loop基序,不含跨膜结构域和信号肽。ShPR10二级结构包含51.85%的无规则卷曲、35.98%的α-螺旋、7.41%的延伸链和4.76%的β-转角。ShPR10蛋白与玉米ZmPR10蛋白的氨基酸序列相似性高达91.53%,两者在进化树上聚为一个分支。ShPR10定位在细胞质和细胞核,与SCSMV P1在酵母细胞和烟草细胞中存在互作关系。ShPR10本身不具有沉默抑制子活性,其表达削弱了P1的沉默抑制子活性,但对P1蛋白的含量无明显影响。综上,ShPR10可能通过结合P1来削弱P1的沉默抑制子活性,从而提高甘蔗对SCSMV的抗性。展开更多
In order to develop an anti-FMDV Asial type monoclonal antibody (mAb), BABL/c mice were immunized with recombinant FMDV VP1 protein. Three mAbs, 1B8, 5El and 5E2, were then further optimized. The result indicated th...In order to develop an anti-FMDV Asial type monoclonal antibody (mAb), BABL/c mice were immunized with recombinant FMDV VP1 protein. Three mAbs, 1B8, 5El and 5E2, were then further optimized. The result indicated that prepared anti-FMDV Asial mAbs had no cross-reactivity with Swine vesicular disease (SVD) and FMDV O, A and C type antigen. Their titers in abdomen liquor were 1:5×10^6, 1:2×10^6 and 1:5×10^6, respectively. 1B8 was found to be of IgG1 subtype, 5El and 5E2 belonged to IgG2b subtype. In this study, the prepared mAbs are specific for detecting FMDV type Asia1, and is potentially useful for pen-side diagnosis.展开更多
VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability...VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability of the VP1 protein to induce an immune response was then evaluated in guinea pigs. Western blot and ELISA results indicated that the VP1 protein can be recognized by SVDV positive serum, Furthermore, anti-SVDV specific antibodies and lymphocyte proliferation were elicited and increased by VP1 protein after vaccination. These results encourage further work towards the development of a vaccine against SVDV infection.展开更多
Enterovirus type 71(EV71) causes severe hand-foot-and-mouth disease (HFMD) resulting in hundreds of deaths of children every year; However, currently, there is no effective treatment for EV71. In this study, the E...Enterovirus type 71(EV71) causes severe hand-foot-and-mouth disease (HFMD) resulting in hundreds of deaths of children every year; However, currently, there is no effective treatment for EV71. In this study, the EV71 poly-protein (EV71-P1 protein) gene was processed and cloned into the eukaryotic expression vector pPIC9k and then expressed in Pichia pastoris strain GSll5. The EV71 P1 protein with a molecular weight of 100 kD was produced and secreted into the medium. The soluble EV71 P1 protein was purified by column chromatography with a recovery efficiency of 70%. The result of the immunological analysis showed that the EV71 P1 protein had excellent immunogenicity and could stimulate the production of EV71-VP1 IgG antibody in injected rabbits. We suggest that EV71-P1 protein is an ideal candidate for an EV71 vaccine to prevent EV71 infection.展开更多
Estrogen exerts its biological effects through two signal pathways,the genomic and non-genomic pathway,both of which contribute to cell homeostasis.The non-genomic pathway has been suggested to be important in estroge...Estrogen exerts its biological effects through two signal pathways,the genomic and non-genomic pathway,both of which contribute to cell homeostasis.The non-genomic pathway has been suggested to be important in estrogen-induced cardio-,neuron-,and osteoprotection,and confers the ability of the cell to rapidly respond to its environment.The effects of the non-genomic pathway are the regulation of different cellular processes,such as proliferation,survival,apoptosis,and other functions in diverse cell-types.The proline-,glutamic acid-,and leucine-rich protein 1(PELP1),is now known as a modulator of the estrogen receptors,and is also a novel coregulator of the non-genomic signal pathway with various functions.Therefore,the evaluation of the molecular crosstalk between PELP1 and the non-genomic pathway may lead to the development of functionally selective estrogen receptor modulators which can participate in the multiple functions of estrogen signaling in reproductive tissues and other organs.展开更多
基金The National high Technology Research and Development Program of China (No.2006AA10A204)The National science & Technology Pillar Program (No. 2006BAD06A17)
文摘In order to develop an anti-FMDV Asial type monoclonal antibody (mAb), BABL/c mice were immunized with recombinant FMDV VP1 protein. Three mAbs, 1B8, 5El and 5E2, were then further optimized. The result indicated that prepared anti-FMDV Asial mAbs had no cross-reactivity with Swine vesicular disease (SVD) and FMDV O, A and C type antigen. Their titers in abdomen liquor were 1:5×10^6, 1:2×10^6 and 1:5×10^6, respectively. 1B8 was found to be of IgG1 subtype, 5El and 5E2 belonged to IgG2b subtype. In this study, the prepared mAbs are specific for detecting FMDV type Asia1, and is potentially useful for pen-side diagnosis.
文摘VP1, a capsid protein of swine vesicular disease virus, was cloned from the SVDV HK/70 strain and inserted into retroviral vector pBABE puro, and expressed in PK15 cells by an retroviral expression system. The ability of the VP1 protein to induce an immune response was then evaluated in guinea pigs. Western blot and ELISA results indicated that the VP1 protein can be recognized by SVDV positive serum, Furthermore, anti-SVDV specific antibodies and lymphocyte proliferation were elicited and increased by VP1 protein after vaccination. These results encourage further work towards the development of a vaccine against SVDV infection.
基金Key Project of Science and Technology Department of Wuhan(zz2011-12)Key Project of the Educational Bureau of Wuhan(sz2011-13-10)+1 种基金Project of Science and Technology Department of Hubei(2010CDB04801)The State Key Laboratory program of Viral Genetic Engineering(2010KF10)
文摘Enterovirus type 71(EV71) causes severe hand-foot-and-mouth disease (HFMD) resulting in hundreds of deaths of children every year; However, currently, there is no effective treatment for EV71. In this study, the EV71 poly-protein (EV71-P1 protein) gene was processed and cloned into the eukaryotic expression vector pPIC9k and then expressed in Pichia pastoris strain GSll5. The EV71 P1 protein with a molecular weight of 100 kD was produced and secreted into the medium. The soluble EV71 P1 protein was purified by column chromatography with a recovery efficiency of 70%. The result of the immunological analysis showed that the EV71 P1 protein had excellent immunogenicity and could stimulate the production of EV71-VP1 IgG antibody in injected rabbits. We suggest that EV71-P1 protein is an ideal candidate for an EV71 vaccine to prevent EV71 infection.
文摘Estrogen exerts its biological effects through two signal pathways,the genomic and non-genomic pathway,both of which contribute to cell homeostasis.The non-genomic pathway has been suggested to be important in estrogen-induced cardio-,neuron-,and osteoprotection,and confers the ability of the cell to rapidly respond to its environment.The effects of the non-genomic pathway are the regulation of different cellular processes,such as proliferation,survival,apoptosis,and other functions in diverse cell-types.The proline-,glutamic acid-,and leucine-rich protein 1(PELP1),is now known as a modulator of the estrogen receptors,and is also a novel coregulator of the non-genomic signal pathway with various functions.Therefore,the evaluation of the molecular crosstalk between PELP1 and the non-genomic pathway may lead to the development of functionally selective estrogen receptor modulators which can participate in the multiple functions of estrogen signaling in reproductive tissues and other organs.