Background: Optical coherence tomography (OCT) angiography is a novel technique by which we can detect the local perfusion of fundus directly. The aim of this study was to evaluate the reproducibility of optic disc...Background: Optical coherence tomography (OCT) angiography is a novel technique by which we can detect the local perfusion of fundus directly. The aim of this study was to evaluate the reproducibility of optic disc and macular flow perfusion parameters in rhesus monkeys using OCT angiography. Methods: Eighteen healthy monkeys (18 eyes) were subjected to optic disc and macula flow index measurements via a high-speed and high-resolution spectral-domain OCT XR Avanti with a split-spectrum amplitude de-correlation angiography algorithm. Right eye was imaged 3 times during the first examination and once during each of the two following examinations. The intra-visit and inter-visit intraclass correlation coefficients (ICCs) were both determined. Results: The average flow indices of the four optic disc area layers were 0.171 ± 0.009 (optic nerve head), 0.015 ± 0.004 (vitreous), 0.052 ±0.009 (radial peripapillary capillary), and 0.167 ± 0.011 (choroid). Average flow indices of the four macula area layers were 0,044 ± 0.011 (superficial retina), 0.036 ± 0.011 (deep retina), 0.016 ± 0.009 (outer retina), and 0.155 ± 0.013 (choroid). Intra-visit (1CC value: 0.821-0.954) and inter-visit (ICC value: 0.844±0.899) repeatability were both high. Conclusions: The study is about the reproducibility of optic disc and macular perfusion parameters as measured by OCT angiography in healthy rhesus monkeys. Flow index measurement reproducibility is high for both the optic disc and macula of normal monkey eyes. OCT angiography might be a useful technique to assess changes when examining monkeys with experimental ocular diseases.展开更多
基金This project was supported by a grant from National Natural Science Foundation of China (No. 81271005).
文摘Background: Optical coherence tomography (OCT) angiography is a novel technique by which we can detect the local perfusion of fundus directly. The aim of this study was to evaluate the reproducibility of optic disc and macular flow perfusion parameters in rhesus monkeys using OCT angiography. Methods: Eighteen healthy monkeys (18 eyes) were subjected to optic disc and macula flow index measurements via a high-speed and high-resolution spectral-domain OCT XR Avanti with a split-spectrum amplitude de-correlation angiography algorithm. Right eye was imaged 3 times during the first examination and once during each of the two following examinations. The intra-visit and inter-visit intraclass correlation coefficients (ICCs) were both determined. Results: The average flow indices of the four optic disc area layers were 0.171 ± 0.009 (optic nerve head), 0.015 ± 0.004 (vitreous), 0.052 ±0.009 (radial peripapillary capillary), and 0.167 ± 0.011 (choroid). Average flow indices of the four macula area layers were 0,044 ± 0.011 (superficial retina), 0.036 ± 0.011 (deep retina), 0.016 ± 0.009 (outer retina), and 0.155 ± 0.013 (choroid). Intra-visit (1CC value: 0.821-0.954) and inter-visit (ICC value: 0.844±0.899) repeatability were both high. Conclusions: The study is about the reproducibility of optic disc and macular perfusion parameters as measured by OCT angiography in healthy rhesus monkeys. Flow index measurement reproducibility is high for both the optic disc and macula of normal monkey eyes. OCT angiography might be a useful technique to assess changes when examining monkeys with experimental ocular diseases.