Casablanca, Morocco's economic capital continues today to fight against the proliferation of informal settle- ments affecting its urban fabric illustrated especially by the slums. Actually Casablanca represents 25...Casablanca, Morocco's economic capital continues today to fight against the proliferation of informal settle- ments affecting its urban fabric illustrated especially by the slums. Actually Casablanca represents 25% of the total slums of Morocco [1]. These are the habitats of all deprived of healthy sanitary conditions and judged precarious from the perspective humanitarian and below the acceptable. The majority of the inhabi- tants of these slums are from the rural exodus with insufficient income to meet the basic needs of daily life. Faced with this situation and to eradicate these habitats, the Moroccan government has launched since 2004 an entire program to create cities without slums (C.W.S.) to resettle or relocate families. Indeed the process control and monitoring of this program requires first identifying and detecting spatial habitats. To achieve these tasks, conventional methods such as information gathering, mapping, use of databases and statistics often have shown their limits and are sometimes outdated. It is within this framework and that of the great German Morocco project “Urban agriculture as an integrative factor of development that fits our project de- tection of slums in Casablanca. The use of satellite imagery, particulary the HSR, has the advantage of providing the physical coverage of urban land but it raises the difficulty of choosing the appropriate method to apply.This paper is actually to develop new approaches based mainly on object-oriented classification of high spatial resolution satellite images for the detection of slums.This approach has been developed for mapping the urban land through by integration of several types of information (spectral, spatial, contextual ...) (Hofmann, P ., 2001, Herold et al. 2002b;Van Der Sande et al., 2003, Benz et al., 2004, Nobrega et al., 2006). In order to refine the result of classification, we applied mathematical morphology and in particular the closing filter. The data from this classification (binary image), which then will be used in a spa展开更多
基于厘米级高分辨率无人机影像,应用面向对象方法(Object-Based Image Analysis,OBIA)对吉林省伊通县椽子沟流域的横坡改垄、地埂植物带、生态恢复乔木林、生态恢复草地等水土保持措施进行自动精准识别。应用超绿指数(Excess Green Inde...基于厘米级高分辨率无人机影像,应用面向对象方法(Object-Based Image Analysis,OBIA)对吉林省伊通县椽子沟流域的横坡改垄、地埂植物带、生态恢复乔木林、生态恢复草地等水土保持措施进行自动精准识别。应用超绿指数(Excess Green Index,ExG)、超红指数(Excess Red Index,ExR)、归一化差异指数(Normalized Difference Index,NDI)等光谱指数,形状的主方向、形状指数等形状特征,均值(Mean)、方差(Variance)、对比度(Contrast)等纹理特征进行措施的特征提取。结果表明:研究区水土保持措施识别的总体精度可达91.24%,Kappa系数为0.87;对垄台、垄沟等线性水土保持措施总体精度可达72.33%,Kappa系数为0.63。基于厘米级无人机影像,应用面向对象方法基本可实现对黑土区水土保持措施的精准识别,也可对垄台垄沟等线性措施进行自动识别,研究结果可为水土保持措施实施范围及完好程度的动态监测提供参考依据。展开更多
文摘Casablanca, Morocco's economic capital continues today to fight against the proliferation of informal settle- ments affecting its urban fabric illustrated especially by the slums. Actually Casablanca represents 25% of the total slums of Morocco [1]. These are the habitats of all deprived of healthy sanitary conditions and judged precarious from the perspective humanitarian and below the acceptable. The majority of the inhabi- tants of these slums are from the rural exodus with insufficient income to meet the basic needs of daily life. Faced with this situation and to eradicate these habitats, the Moroccan government has launched since 2004 an entire program to create cities without slums (C.W.S.) to resettle or relocate families. Indeed the process control and monitoring of this program requires first identifying and detecting spatial habitats. To achieve these tasks, conventional methods such as information gathering, mapping, use of databases and statistics often have shown their limits and are sometimes outdated. It is within this framework and that of the great German Morocco project “Urban agriculture as an integrative factor of development that fits our project de- tection of slums in Casablanca. The use of satellite imagery, particulary the HSR, has the advantage of providing the physical coverage of urban land but it raises the difficulty of choosing the appropriate method to apply.This paper is actually to develop new approaches based mainly on object-oriented classification of high spatial resolution satellite images for the detection of slums.This approach has been developed for mapping the urban land through by integration of several types of information (spectral, spatial, contextual ...) (Hofmann, P ., 2001, Herold et al. 2002b;Van Der Sande et al., 2003, Benz et al., 2004, Nobrega et al., 2006). In order to refine the result of classification, we applied mathematical morphology and in particular the closing filter. The data from this classification (binary image), which then will be used in a spa
文摘基于厘米级高分辨率无人机影像,应用面向对象方法(Object-Based Image Analysis,OBIA)对吉林省伊通县椽子沟流域的横坡改垄、地埂植物带、生态恢复乔木林、生态恢复草地等水土保持措施进行自动精准识别。应用超绿指数(Excess Green Index,ExG)、超红指数(Excess Red Index,ExR)、归一化差异指数(Normalized Difference Index,NDI)等光谱指数,形状的主方向、形状指数等形状特征,均值(Mean)、方差(Variance)、对比度(Contrast)等纹理特征进行措施的特征提取。结果表明:研究区水土保持措施识别的总体精度可达91.24%,Kappa系数为0.87;对垄台、垄沟等线性水土保持措施总体精度可达72.33%,Kappa系数为0.63。基于厘米级无人机影像,应用面向对象方法基本可实现对黑土区水土保持措施的精准识别,也可对垄台垄沟等线性措施进行自动识别,研究结果可为水土保持措施实施范围及完好程度的动态监测提供参考依据。