期刊文献+

面向地理对象影像分析技术的研究进展与分析 被引量:4

Advances in the Study of Geographic Object Based Image Analysis
下载PDF
导出
摘要 面向地理对象影像分析技术GEOBIA是地理信息科学中的一个正在发展的研究领域,从提出至今已有10余年的历史,受到了国际上众多研究机构的高度关注,被认为是一个不断发展的综合性学科,其基础理论、技术方法、应用推广等问题有待深入研究。因此,紧跟GEOBIA的研究动态,重点并系统分析该技术的发展历程与进展,对我国在此方面的研究定位具有重要意义。本文分析了GEOBIA技术的发展,总结归纳了现有技术方法,深入分析了GEOBIA技术的原则、优势、劣势、机遇与挑战,积极探讨了需要深入研究的科学问题,为深入研究GEOBIA理论、方法和应用奠定了基础。 Geographic object-based image analysis (GEOBIA ) is a developing technique in the field of geographic information science.It has been highly concerned by a large number of international research institutions for more than ten years.Its basic theory,technical method and application should be studied thoroughly.Therefore,it is important to track the dynamic research of GEOBIA,and analyze its progress and development.This paper analyzed the development of GEOBIA technology,summarized the methods of GEOBIA,and analyzed its strengths,weaknesses,opportunities and challenge.At last the science questions for further study were explored which make the basis for the study of GEOBIA theories,methods and applications.
出处 《遥感信息》 CSCD 2014年第4期52-57,共6页 Remote Sensing Information
基金 国家科技支撑计划(2012BAH28B03) 公益性行业科研专项(201412008)
关键词 面向地理对象影像分析技术 影像分割 特征提取 语义建模 geographic object based image analysis image segmentation feature selection semantics modelling
  • 相关文献

参考文献10

  • 1.Knowledge-based region labeling for remote sensing image interpretation[J].Computers Environment and Urban Systems.2012(5) 被引量:1
  • 2Andrea S. Laliberte,Albert Rango,Kris M. Havstad,Jack F. Paris,Reldon F. Beck,Rob McNeely,Amalia L. Gonzalez.Object-oriented image analysis for mapping shrub encroachment from 1937 to 2003 in southern New Mexico[J].Remote Sensing of Environment.2004(1) 被引量:2
  • 3Masroor Hussain,Dongmei Chen,Angela Cheng,Hui Wei,David Stanley.Change detection from remotely sensed images: From pixel-based to object-based approaches[J].ISPRS Journal of Photogrammetry and Remote Sensing.2013 被引量:1
  • 4Anne Puissant,Simon Rougier,André Stumpf.Object-oriented mapping of urban trees using Random Forest Classifiers[J].International Journal of Applied Earth Observations and Geoinformation.2013 被引量:1
  • 5Damien Arvor,Laurent Durieux,Samuel Andrés,Marie-Angélique Laporte.Advances in Geographic Object-Based Image Analysis with ontologies: A review of main contributions and limitations from a remote sensing perspective[J].ISPRS Journal of Photogrammetry and Remote Sensing.2013 被引量:1
  • 6Elisabeth A. Addink.Introduction to the GEOBIA 2010 special issue: From pixels to geographic objects in remote sensing image analysis[J].International Journal of Applied Earth Observations and Geoinformation.2011 被引量:1
  • 7Soe W. Myint,Patricia Gober,Anthony Brazel,Susanne Grossman-Clarke,Qihao Weng.Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery[J].Remote Sensing of Environment.2011(5) 被引量:1
  • 8Dennis C. Duro,Steven E. Franklin,Monique G. Dubé.A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery[J].Remote Sensing of Environment.2011 被引量:2
  • 9F.F. Camargo,C.M. Almeida,G.A.O.P. Costa,R.Q. Feitosa,D.A.B. Oliveira,C. Heipke,R.S. Ferreira.An open source object-based framework to extract landform classes[J].Expert Systems With Applications.2011(1) 被引量:1
  • 10于静..基于目视解译的城市遥感影像语义结构研究[D].中国科学院遥感应用研究所,2008:

共引文献2

同被引文献20

  • 1张友静,高云霄,黄浩,任立良.基于SVM决策支持树的城市植被类型遥感分类研究[J].遥感学报,2006,10(2):191-196. 被引量:42
  • 2黄昕,张良培,李平湘.基于多尺度特征融合和支持向量机的高分辨率遥感影像分类[J].遥感学报,2007,11(1):48-54. 被引量:48
  • 3BLASCHKE T. Object based image analysis for remote Sensing[J]. ISPRS Journal of Photogrammetry and Re- moteSensing, 2010,65 ( 1 ) : 2 -16. 被引量:1
  • 4BLASCHKE T, HAY G J, WENG Q. Collective sens ing: integrating geospatial technologies to understand urban systems : an overview[J].Remote Sensing, 2011, 3(8) :1743-1776. 被引量:1
  • 5BLASCHKE T, HAY G J, KELLY M, et al. Geo- graphic object-based image analysis:a new paradigm in remote sensing and geographic information science[J]. ISPRS International Journal of Photogrammetry and Remote Sensing,2014,87(1) :180-191. 被引量:1
  • 6BARALDI A, BOSCHETTI L. Operational automatic remote sensing image understanding systems: beyond geographic obiect based and object-oriented image a- nalysis (GEOBIA/GEOOIA). part 1 :introduction[J]. Remote Sensing, 2012,4 ( 9 ) : 2694-2735. 被引量:1
  • 7BARALDI A, BOSCHETTI L. Operational automatic remote sensing image understanding systems: beyond geographic object-based and object-oriented image a- nalysis (GEOBIA/GEOOIA). part 2:novel system ar- chitecture, information/knowledge representation, al- gorithm design and implementation[J]. Remote Sens ing,2012,4(9) :2768-2817. 被引量:1
  • 8JONATHAN C W C, DESIRE P. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping air borne hyperspectral imagery[J]. Remote Sensing of Environment, 2008,112 ( 6 ) : 2999-3011. 被引量:1
  • 9NOVACK T, ESCH T, KUX H, et al. Machine learn- ing comparison between WorldView-2 and QuickBird- 2-simulated imagery regarding object-based urban land cover classification[J ]. Remote Sensing, 2011,3 ( 10 ) : 2263 -2282. 被引量:1
  • 10DURO D C,FRANKLIN S E,DUBE M G. A compari- son of pixel-based and object-based image analysis with selected machine learning algorithms for the classifica- tion of agricultural landscapes using SPOT-5 HRG im- agery[J]. Remote Sensing of Environment, 2012, 118 (6) :259-272. 被引量:1

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部