In this paper, we reconsider the clustering problem for image over-segmentation from a new perspective. We propose a novel search algorithm called"active search" which explicitly considers neighbor continuit...In this paper, we reconsider the clustering problem for image over-segmentation from a new perspective. We propose a novel search algorithm called"active search" which explicitly considers neighbor continuity. Based on this search method, we design a back-and-forth traversal strategy and a joint assignment and update step to speed up the algorithm. Compared to earlier methods, such as simple linear iterative clustering(SLIC) and its variants, which use fixed search regions and perform the assignment and the update steps separately, our novel scheme reduces the number of iterations required for convergence,and also provides better boundaries in the oversegmentation results. Extensive evaluation using the Berkeley segmentation benchmark verifies that our method outperforms competing methods under various evaluation metrics. In particular, our method is fastest,achieving approximately 30 fps for a 481 × 321 image on a single CPU core. To facilitate further research, our code is made publicly available.展开更多
The multitude of airborne point clouds limits the point cloud processing efficiency.Superpoints are grouped based on similar points,which can effectively alleviate the demand for computing resources and improve proces...The multitude of airborne point clouds limits the point cloud processing efficiency.Superpoints are grouped based on similar points,which can effectively alleviate the demand for computing resources and improve processing efficiency.However,existing superpoint segmentation methods focus only on local geometric structures,resulting in inconsistent spectral features of points within a superpoint.Such feature inconsistencies degrade the performance of subsequent tasks.Thus,this study proposes a novel Superpoint Segmentation method that jointly utilizes spatial Geometric and Spectral Information for multispectral point cloud superpoint segmentation(GSI-SS).Specifically,a similarity metric that combines spatial geometry and spectral information is proposed to facilitate the consistency of geometric structures and object attributes within segmented superpoints.Following the formation of the primary superpoints,an intersuperpoint pointexchange mechanism that maximizes feature consistency within the final superpoints is proposed.Experiments are conducted on two real multispectral point cloud datasets,and the proposed method achieved higher recall,precision,F score,and lower global consistency and feature classification errors.The experimental results demonstrate the superiority of the proposed GSI-SS over several state-of-the-art methods.展开更多
基金sponsored by National Natural Science Foundation of China (Nos. 61620106008 and 61572264)Huawei Innovation Research Program (HIRP)
文摘In this paper, we reconsider the clustering problem for image over-segmentation from a new perspective. We propose a novel search algorithm called"active search" which explicitly considers neighbor continuity. Based on this search method, we design a back-and-forth traversal strategy and a joint assignment and update step to speed up the algorithm. Compared to earlier methods, such as simple linear iterative clustering(SLIC) and its variants, which use fixed search regions and perform the assignment and the update steps separately, our novel scheme reduces the number of iterations required for convergence,and also provides better boundaries in the oversegmentation results. Extensive evaluation using the Berkeley segmentation benchmark verifies that our method outperforms competing methods under various evaluation metrics. In particular, our method is fastest,achieving approximately 30 fps for a 481 × 321 image on a single CPU core. To facilitate further research, our code is made publicly available.
基金supported by the Youth Project of the National Natural Science Foundation of China(Grant No.62201237)the Yunnan Fundamental Research Projects(Grant Nos.202101BE070001-008 and202301AV070003)+1 种基金the Youth Project of the Xingdian Talent Support Plan of Yunnan Province(Grant No.KKRD202203068)the Major Science and Technology Projects in Yunnan Province(Grant No.202202AD080013)。
文摘The multitude of airborne point clouds limits the point cloud processing efficiency.Superpoints are grouped based on similar points,which can effectively alleviate the demand for computing resources and improve processing efficiency.However,existing superpoint segmentation methods focus only on local geometric structures,resulting in inconsistent spectral features of points within a superpoint.Such feature inconsistencies degrade the performance of subsequent tasks.Thus,this study proposes a novel Superpoint Segmentation method that jointly utilizes spatial Geometric and Spectral Information for multispectral point cloud superpoint segmentation(GSI-SS).Specifically,a similarity metric that combines spatial geometry and spectral information is proposed to facilitate the consistency of geometric structures and object attributes within segmented superpoints.Following the formation of the primary superpoints,an intersuperpoint pointexchange mechanism that maximizes feature consistency within the final superpoints is proposed.Experiments are conducted on two real multispectral point cloud datasets,and the proposed method achieved higher recall,precision,F score,and lower global consistency and feature classification errors.The experimental results demonstrate the superiority of the proposed GSI-SS over several state-of-the-art methods.