期刊文献+

Multispectral point cloud superpoint segmentation

原文传递
导出
摘要 The multitude of airborne point clouds limits the point cloud processing efficiency.Superpoints are grouped based on similar points,which can effectively alleviate the demand for computing resources and improve processing efficiency.However,existing superpoint segmentation methods focus only on local geometric structures,resulting in inconsistent spectral features of points within a superpoint.Such feature inconsistencies degrade the performance of subsequent tasks.Thus,this study proposes a novel Superpoint Segmentation method that jointly utilizes spatial Geometric and Spectral Information for multispectral point cloud superpoint segmentation(GSI-SS).Specifically,a similarity metric that combines spatial geometry and spectral information is proposed to facilitate the consistency of geometric structures and object attributes within segmented superpoints.Following the formation of the primary superpoints,an intersuperpoint pointexchange mechanism that maximizes feature consistency within the final superpoints is proposed.Experiments are conducted on two real multispectral point cloud datasets,and the proposed method achieved higher recall,precision,F score,and lower global consistency and feature classification errors.The experimental results demonstrate the superiority of the proposed GSI-SS over several state-of-the-art methods.
出处 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第4期1270-1281,共12页 中国科学(技术科学英文版)
基金 supported by the Youth Project of the National Natural Science Foundation of China(Grant No.62201237) the Yunnan Fundamental Research Projects(Grant Nos.202101BE070001-008 and202301AV070003) the Youth Project of the Xingdian Talent Support Plan of Yunnan Province(Grant No.KKRD202203068) the Major Science and Technology Projects in Yunnan Province(Grant No.202202AD080013)。
  • 相关文献

参考文献5

二级参考文献42

  • 1Mian A S, Bennamoun M, Owens R. Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE T Pattern Anal Mach Intell, 2006, 28: 1584–1601. 被引量:1
  • 2Funkhouser T, Kazhdan M, Shilane P, et al. Modeling by example. ACM T Graphic, 2004, 23: 652–663. 被引量:1
  • 3Karni Z, Gotsman C. Spectral compression of mesh geometry. In: Proceedings of SIGGRAPH, New Orleans, 2000. 279–286. 被引量:1
  • 4Li X, Woon T, Tan T S, et al. Decomposing polygon meshes for interactive applications. In: Proceedings of the ACM Symposium on Interactive 3D Graphics, Venice, 2001. 35–42. 被引量:1
  • 5Cao J, He Y, Li Z, et al. Orienting raw point sets by global contraction and visibility voting. Comput Graph, 2011, 35: 733–740. 被引量:1
  • 6Sheung H, Wang C C L. Robust mesh reconstruction from unoriented noisy points. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, San Francisco, 2009. 13–24. 被引量:1
  • 7Vo A V, Truong-Hong L, Laefer D F, et al. Octree-based region growing for point cloud segmentation. ISPRS J Photo Rem Sens, 2015, 104: 88–100. 被引量:1
  • 8Rousseeuw P J, Leroy A M. Robust Regression and Outlier Detection. New York: John Wiley & Sons, 2005. 被引量:1
  • 9Fleishman S, Cohen-Or D, Silva C T. Robust moving least-squares fitting with sharp features. ACM T Graphic, 2005, 24: 544–552. 被引量:1
  • 10Hoppe H, DeRose T, Duchamp T, et al. Surface reconstruction from unorganized points. ACM Siggraph Comput Graph, 1999, 26: 71–78. 被引量:1

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部