2,5-Furandicarboxylic acid (FDCA) is a potential biorenewable chemical for applications including plastics, polyamides, drugs, etc. The selective biosynthesis of FDCA from 5-hydroxymethylfurfural (HMF) by a speci c en...2,5-Furandicarboxylic acid (FDCA) is a potential biorenewable chemical for applications including plastics, polyamides, drugs, etc. The selective biosynthesis of FDCA from 5-hydroxymethylfurfural (HMF) by a speci c enzyme poses a great challenge. In this study, we reported an e cient strategy to produce FDCA from HMF by the tandem biocatalysis of laccase (CotA-TJ102@UIO-66-NH 2 ) and Novozym 435. For the rst step, a nanoparticle metal organic framework was synthesized as a carrier to immobilize CotA-TJ102@UIO-66-NH 2 , which was assigned for the production of 5-formyl-2-furancarboxylic acid (FFCA) and featured an enzyme loading of 255.54 mg/g, speci c activity of 135.90 U/mg, and solid loading ratio of 99.65%. Under optimal conditions, an ideal FFCA yield of 98.5% was achieved, and the CotA-TJ102@UIO-66-NH2 pre- sented a high recycling capacity after 10 cycles. For the second step, Novozym 435 was applied for the further conversion of FFCA into FDCA, presenting a high FDCA yield of 95.5% under the optimized conditions. Novozym 435 also exhibited a high recyclability after eight cycles. As a result, the tandem biocatalysis strategy provided a 94.2% FDCA yield from HMF, indicating its excellence as a method for FDCA production.展开更多
基金supported by the National Key R&D Program of China (No. 2017YFB0306502)the Science Fund for Creative Research Groups (No. 21621004)+2 种基金the Project funded by China Postdoctoral Science Foundation (2019)the Key Project of Tianjin Science and Technology Committee (No. 17YFZCSY01080)the Program of Beiyang Young Scholar of Tianjin University (2012)
文摘2,5-Furandicarboxylic acid (FDCA) is a potential biorenewable chemical for applications including plastics, polyamides, drugs, etc. The selective biosynthesis of FDCA from 5-hydroxymethylfurfural (HMF) by a speci c enzyme poses a great challenge. In this study, we reported an e cient strategy to produce FDCA from HMF by the tandem biocatalysis of laccase (CotA-TJ102@UIO-66-NH 2 ) and Novozym 435. For the rst step, a nanoparticle metal organic framework was synthesized as a carrier to immobilize CotA-TJ102@UIO-66-NH 2 , which was assigned for the production of 5-formyl-2-furancarboxylic acid (FFCA) and featured an enzyme loading of 255.54 mg/g, speci c activity of 135.90 U/mg, and solid loading ratio of 99.65%. Under optimal conditions, an ideal FFCA yield of 98.5% was achieved, and the CotA-TJ102@UIO-66-NH2 pre- sented a high recycling capacity after 10 cycles. For the second step, Novozym 435 was applied for the further conversion of FFCA into FDCA, presenting a high FDCA yield of 95.5% under the optimized conditions. Novozym 435 also exhibited a high recyclability after eight cycles. As a result, the tandem biocatalysis strategy provided a 94.2% FDCA yield from HMF, indicating its excellence as a method for FDCA production.