In order to solve the problem of ammonia-nitrogen pollution in the enrichment process of the ionadsorption type rare earth ore,the technology of non-ammonia precipitation with magnesium oxide precipitant was carried o...In order to solve the problem of ammonia-nitrogen pollution in the enrichment process of the ionadsorption type rare earth ore,the technology of non-ammonia precipitation with magnesium oxide precipitant was carried out.It is determined that the rare earth precipitation efficiency is 99.6%and the purity of rare earth concentrates is only 85.89 wt%under the optimum precipitation conditions.And the contents of MgO,SO3 and Al2O3 in the rare earth concentrates are 5.12 wt%,6.77 wt%and 1.78 wt%,respectively.Furthermore,the thermo-decomposition process of precipitates was investigated by TGDSC,XRD and FI-IR.The thermal decomposition process consists of two stages:the dehydration of rare earth hydroxide and alkaline rare earth sulfate within 900℃and the thermal decomposition of RE2O2SO4 at 900-1300℃.Therefore,a high-temperature calcinations method for removing SO3 from precipitates is proposed.When the precipitates are calcined at 1300℃for 2 h,the rare earth concentrates with a purity of 92.03 wt%can be acquired.Moreover,the content of SO3 in the concentrate is only 0.46 wt%.In the MgO precipitation and high-temperature calcinations process,the raw material cost is low and the quality of rare earth concentrates is acceptable.It could have great significance for nonammonia enrichment of rare earth from the rare earth leaching liquor,and finally solve the problem of ammonia nitrogen in the extraction process of the ion-adsorption type rare earth ore within magnesium salt system.展开更多
Ion adsorption type rare earth ores(IATREOs)are a valuable strategic mineral resource in China,which feature a complete composition of fifteen rare earth elements and are rich in medium and heavy rare earth(RE)element...Ion adsorption type rare earth ores(IATREOs)are a valuable strategic mineral resource in China,which feature a complete composition of fifteen rare earth elements and are rich in medium and heavy rare earth(RE)elements.In the leaching process for recovering rare earth elements from IATREOs,many impurities will be leached together with rare earth elements and enter the leaching liquor.An impurity removal-precipitation enrichment technique is currently applied to selectively recovery rare earth elements from the leaching liquor with the high content of impurities and low concentration of rare earth elements by using ammonium bicarbonate in the industry.However,a high loss of rare earth elements and severe ammonia nitrogen pollution are caused by this process.Therefore,more beneficial impurities removal technologies,mainly for aluminum,and green enrichment technologies with lower pollution are now urgently needed.For this purpose,this paper analyzed two aspects of research progress in recent decades:the green separation of rare earth elements and aluminum from leaching liquor and the green and efficient enrichment of rare earth elements.Finally,an approach for the high-efficiency and green enrichment of rare earth elements from leaching liquor of the IATREOs is proposed in several aspects,including impurity inhibition leaching,neutralization and impurity removal,alkaline calcium and magnesium salt precipitation enrichment,and centrifugal extraction enrichment.展开更多
In cattle, dietary protein is gradually degraded into peptide-bound amino acids(PBAAs), free amino acids(FAAs), and ultimately into ammonia by the rumen microbes. Both PBAA and FAA are milk protein precursors, and...In cattle, dietary protein is gradually degraded into peptide-bound amino acids(PBAAs), free amino acids(FAAs), and ultimately into ammonia by the rumen microbes. Both PBAA and FAA are milk protein precursors, and the rumen and small intestines are the main sites where such precursors are produced and absorbed. This work was designed to investigate the expression of the peptide transporter Pep T1 and the AA transporters ASCT2, y+LAT1, and ATB0,+, and the concentrations of PBAA, FAA, and soluble protein in the rumen, omasum, and duodenum of dairy cows. Tissues and digesta were collected from six healthy Chinese Holstein dairy cows immediately after the animals were slaughtered. The expression of transporters was analyzed by real-time quantitative polymerase chain reaction(PCR). The FAA concentration was assessed using an amino acid(AA) analyzer, PBAA concentration by quantification of AA before and after acid-hydrolysis by 6 mol/L HCl, and soluble protein concentration by quantification of the bicinchoninic acid content. The results showed that the relative abundance of m RNA of the transporters and the soluble non-ammonia nitrogen(SNAN) concentration of each fraction were greater in the duodenum than in the rumen or omasum. These results indicate that the duodenum is the predominant location within the nonmesenteric digestive tract for producing milk protein precursors. In addition, PBAA was the largest component of SNAN in the digesta from the rumen, omasum, and duodenum. In conclusion, the duodenum has the greatest concentrations of SNAN and PBAA, and the greatest potential for absorption of SNAN in the form of PBAA in the nonmesenteric gastrointestinal tissues of dairy cows.展开更多
基金Project supported by Program of National Natural Science Foundation of China(51604128)China Postdoctoral Science Foundation(2017M620279,2018T110661)+3 种基金Key Projects of the Major Research and Development Program of Jiangxi Province(20171ACE50008)Qingqiang Excellent Young Talents,Jiangxi University of Science and Technology(JXUSTQJYX2018003)Key R&D Programs of Science and Technology Project of Ganzhou City([2017]179)Science and Technology Innovation Talents Program of Ganzhou City([2018] 50)
文摘In order to solve the problem of ammonia-nitrogen pollution in the enrichment process of the ionadsorption type rare earth ore,the technology of non-ammonia precipitation with magnesium oxide precipitant was carried out.It is determined that the rare earth precipitation efficiency is 99.6%and the purity of rare earth concentrates is only 85.89 wt%under the optimum precipitation conditions.And the contents of MgO,SO3 and Al2O3 in the rare earth concentrates are 5.12 wt%,6.77 wt%and 1.78 wt%,respectively.Furthermore,the thermo-decomposition process of precipitates was investigated by TGDSC,XRD and FI-IR.The thermal decomposition process consists of two stages:the dehydration of rare earth hydroxide and alkaline rare earth sulfate within 900℃and the thermal decomposition of RE2O2SO4 at 900-1300℃.Therefore,a high-temperature calcinations method for removing SO3 from precipitates is proposed.When the precipitates are calcined at 1300℃for 2 h,the rare earth concentrates with a purity of 92.03 wt%can be acquired.Moreover,the content of SO3 in the concentrate is only 0.46 wt%.In the MgO precipitation and high-temperature calcinations process,the raw material cost is low and the quality of rare earth concentrates is acceptable.It could have great significance for nonammonia enrichment of rare earth from the rare earth leaching liquor,and finally solve the problem of ammonia nitrogen in the extraction process of the ion-adsorption type rare earth ore within magnesium salt system.
基金Project supported by the National Key Research and Development Project of China(2020YFC1909002,2019YFC0605002)National Natural Science Foundation of China(51604128)+1 种基金The Youth Jinggang Scholars Program in Jiangxi Province(QNJG2019056)the Cultivation Project of the State Key Laboratory of Green Development and High-value Utilization of Ionic Rare Earth Resources in Jiangxi Province(20194AFD44003)。
文摘Ion adsorption type rare earth ores(IATREOs)are a valuable strategic mineral resource in China,which feature a complete composition of fifteen rare earth elements and are rich in medium and heavy rare earth(RE)elements.In the leaching process for recovering rare earth elements from IATREOs,many impurities will be leached together with rare earth elements and enter the leaching liquor.An impurity removal-precipitation enrichment technique is currently applied to selectively recovery rare earth elements from the leaching liquor with the high content of impurities and low concentration of rare earth elements by using ammonium bicarbonate in the industry.However,a high loss of rare earth elements and severe ammonia nitrogen pollution are caused by this process.Therefore,more beneficial impurities removal technologies,mainly for aluminum,and green enrichment technologies with lower pollution are now urgently needed.For this purpose,this paper analyzed two aspects of research progress in recent decades:the green separation of rare earth elements and aluminum from leaching liquor and the green and efficient enrichment of rare earth elements.Finally,an approach for the high-efficiency and green enrichment of rare earth elements from leaching liquor of the IATREOs is proposed in several aspects,including impurity inhibition leaching,neutralization and impurity removal,alkaline calcium and magnesium salt precipitation enrichment,and centrifugal extraction enrichment.
基金Project supported by the National Basic Research Program(973)of China(No.2011CB100801)
文摘In cattle, dietary protein is gradually degraded into peptide-bound amino acids(PBAAs), free amino acids(FAAs), and ultimately into ammonia by the rumen microbes. Both PBAA and FAA are milk protein precursors, and the rumen and small intestines are the main sites where such precursors are produced and absorbed. This work was designed to investigate the expression of the peptide transporter Pep T1 and the AA transporters ASCT2, y+LAT1, and ATB0,+, and the concentrations of PBAA, FAA, and soluble protein in the rumen, omasum, and duodenum of dairy cows. Tissues and digesta were collected from six healthy Chinese Holstein dairy cows immediately after the animals were slaughtered. The expression of transporters was analyzed by real-time quantitative polymerase chain reaction(PCR). The FAA concentration was assessed using an amino acid(AA) analyzer, PBAA concentration by quantification of AA before and after acid-hydrolysis by 6 mol/L HCl, and soluble protein concentration by quantification of the bicinchoninic acid content. The results showed that the relative abundance of m RNA of the transporters and the soluble non-ammonia nitrogen(SNAN) concentration of each fraction were greater in the duodenum than in the rumen or omasum. These results indicate that the duodenum is the predominant location within the nonmesenteric digestive tract for producing milk protein precursors. In addition, PBAA was the largest component of SNAN in the digesta from the rumen, omasum, and duodenum. In conclusion, the duodenum has the greatest concentrations of SNAN and PBAA, and the greatest potential for absorption of SNAN in the form of PBAA in the nonmesenteric gastrointestinal tissues of dairy cows.