The Gamma-ray Transient Monitor(GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A(DRO-A) satellite with the scientific objective of detecting gamma-ray transients ranging from 20 ke V to 1 MeV. The GTM...The Gamma-ray Transient Monitor(GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A(DRO-A) satellite with the scientific objective of detecting gamma-ray transients ranging from 20 ke V to 1 MeV. The GTM was equipped with five Gamma-ray Transient Probe(GTP) detector modules utilizing a NaI(Tl) scintillator coupled with a SiPM array. To reduce the SiPM noise, GTP uses a dedicated dual-channel coincident readout design. In this work, we first studied the impact of different coincidence times on the detection efficiency and ultimately selected a 0.5 μs time coincidence window for offline data processing. To test the performance of the GTPs and validate the Monte-Carlo-simulated energy response, we conducted comprehensive ground calibration tests using the Hard X-ray Calibration Facility(HXCF) and radioactive sources, including the energy response, detection efficiency, spatial response, bias-voltage response, and temperature dependence. We extensively present the ground calibration results and validate the design and mass model of the GTP detector, thus providing the foundation for in-flight observations and scientific data analysis.展开更多
The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays a...The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E-C relationship,comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons,radioactive sources,and mono-energetic X-rays.The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences,with all three crystals presenting a higher nonlinearity for X/-rays than for Compton electrons.Despite the LaBr_(3)(Ce)and LaBr_(3)(Ce,Sr)crystals having higher absolute light yields,they exhibited a noticeable nonlinear decrease in the light yield,especially at energies below 400 keV.The NaI(Tl)crystal demonstrated an"excess"light output in the 6-200 keV range,reaching a maximum"excess"of 9.2%at 30 keV in the X-ray testing and up to 15.5%at 14 keV during Compton electron testing,indicating a significant advantage in the detection of low-energy gamma rays.Furthermore,we explored the underlying causes of the observed nonlinearity in these crystals.This study not only elucidates the detector responses of GECAM,but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDA30050100 and XDA30030000)the National Natural Science Foundation of China (Grant Nos.12173038,11775251,12273042,and 12075258)funded by the Strategic Priority Research Program on Space Science (Grant No.XDA15360000) of the Chinese Academy of Sciences (CAS)。
文摘The Gamma-ray Transient Monitor(GTM) is an all-sky monitor onboard the Distant Retrograde Orbit-A(DRO-A) satellite with the scientific objective of detecting gamma-ray transients ranging from 20 ke V to 1 MeV. The GTM was equipped with five Gamma-ray Transient Probe(GTP) detector modules utilizing a NaI(Tl) scintillator coupled with a SiPM array. To reduce the SiPM noise, GTP uses a dedicated dual-channel coincident readout design. In this work, we first studied the impact of different coincidence times on the detection efficiency and ultimately selected a 0.5 μs time coincidence window for offline data processing. To test the performance of the GTPs and validate the Monte-Carlo-simulated energy response, we conducted comprehensive ground calibration tests using the Hard X-ray Calibration Facility(HXCF) and radioactive sources, including the energy response, detection efficiency, spatial response, bias-voltage response, and temperature dependence. We extensively present the ground calibration results and validate the design and mass model of the GTP detector, thus providing the foundation for in-flight observations and scientific data analysis.
基金This work was supported by the National Key Research and Development Program(Nos.2022YFB3503600 and 2021YFA0718500)Strategic Priority Research Program of the Chinese Academy of Sciences(Nos.XDA15360102)National Natural Science Foundation of China(Nos.12273042 and 12075258).
文摘The GECAM series of satellites utilizes LaBr_(3)(Ce),LaBr_(3)(Ce,Sr),and NaI(Tl)crystals as sensitive materials for gamma-ray detectors(GRDs).To investigate the nonlinearity in the detection of low-energy gamma rays and address the errors in the calibration of the E-C relationship,comprehensive tests and comparative studies of the three aforementioned crystals were conducted using Compton electrons,radioactive sources,and mono-energetic X-rays.The nonlinearity test results of the Compton electrons and X-rays demonstrated substantial differences,with all three crystals presenting a higher nonlinearity for X/-rays than for Compton electrons.Despite the LaBr_(3)(Ce)and LaBr_(3)(Ce,Sr)crystals having higher absolute light yields,they exhibited a noticeable nonlinear decrease in the light yield,especially at energies below 400 keV.The NaI(Tl)crystal demonstrated an"excess"light output in the 6-200 keV range,reaching a maximum"excess"of 9.2%at 30 keV in the X-ray testing and up to 15.5%at 14 keV during Compton electron testing,indicating a significant advantage in the detection of low-energy gamma rays.Furthermore,we explored the underlying causes of the observed nonlinearity in these crystals.This study not only elucidates the detector responses of GECAM,but also initiates a comprehensive investigation of the nonlinearity of domestically produced lanthanum bromide and sodium iodide crystals.
文摘论文介绍一种多功能宽量程辐射探测系统的研制。该系统选用GM管与Na I(Tl)γ谱仪,通过嵌入式设计、实验标定、能谱剂量率转换、软件开发等工作实现系统的宽剂量率量程、双参数探测、自动温漂修正、无线数据传输和探测轨迹标定等功能。该系统可搭载无人旋翼机等设备进行远程探测,具有一定的辐射环境分析能力。实验表明该系统在0.01μGy/h^100 m Gy/h的辐射场内剂量率测量误差小于8%,上位机能在3 km距离获取作业路径、γ能谱和剂量率等探测信息。