NOAA-AVHRR data have been more and more used by scientists because of its short temporal resolution,large scope, inexpensive cost and broad wave bands. On macro and middle scale of vegetation remote sensing, NOAAAVHRR...NOAA-AVHRR data have been more and more used by scientists because of its short temporal resolution,large scope, inexpensive cost and broad wave bands. On macro and middle scale of vegetation remote sensing, NOAAAVHRR possesses an advantage when compared with other satellites. However, because NOAA-AVHRR also problem of low resolution, data distortion and geometrical distortion, in the area of application of NOAA-AVHRR in largescale vegetation - mapping, the accuracy of vegetation classification should be improved. This paper discuss the feasibilityof integrating the geographic data in GIS(Geographical Information System) and remotely sensed data in GIS. Under theenvironment of GIS, temperature, precipitation and elevation, which serve as main factors affecting vegetation growth,were processed by a mathematical model and qualified into geographic image under a certain grid system. The geographicimage were overlaid to the NOAA-AVHRR data which had been compressed and processed. In order to evaluate the usefulness of geographic data for vegetation classification, the area under study was digitally classified by two groups of interpreter: the proposed methodology using maximum likelihood classification assisted by the geographic database and a conventional maximum likelihood classification only. Both result were compared using Kappa statistics. The indices to both theproposed and the conventional digital classification methodology were 0. 668(yew good) and 0. 563(good), respetively.The geographic database rendered an improvement over the conventional digital classification. Furthermore, in this study,some problems related to multi-sources data integration are also discussed.展开更多
This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformatio...This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformation and multi-level matching strategies have been proven effective and successful as the experiments show while the control point database is established.展开更多
文摘NOAA-AVHRR data have been more and more used by scientists because of its short temporal resolution,large scope, inexpensive cost and broad wave bands. On macro and middle scale of vegetation remote sensing, NOAAAVHRR possesses an advantage when compared with other satellites. However, because NOAA-AVHRR also problem of low resolution, data distortion and geometrical distortion, in the area of application of NOAA-AVHRR in largescale vegetation - mapping, the accuracy of vegetation classification should be improved. This paper discuss the feasibilityof integrating the geographic data in GIS(Geographical Information System) and remotely sensed data in GIS. Under theenvironment of GIS, temperature, precipitation and elevation, which serve as main factors affecting vegetation growth,were processed by a mathematical model and qualified into geographic image under a certain grid system. The geographicimage were overlaid to the NOAA-AVHRR data which had been compressed and processed. In order to evaluate the usefulness of geographic data for vegetation classification, the area under study was digitally classified by two groups of interpreter: the proposed methodology using maximum likelihood classification assisted by the geographic database and a conventional maximum likelihood classification only. Both result were compared using Kappa statistics. The indices to both theproposed and the conventional digital classification methodology were 0. 668(yew good) and 0. 563(good), respetively.The geographic database rendered an improvement over the conventional digital classification. Furthermore, in this study,some problems related to multi-sources data integration are also discussed.
基金Project supported by the National Oommission of Defense Science and Technotocjy(No.Y96-10)
文摘This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformation and multi-level matching strategies have been proven effective and successful as the experiments show while the control point database is established.