Network theory and its associated techniques has tremendous impact in various discipline and research, from computer, engineering, architecture, humanities, social science to system biology. However in recent years ep...Network theory and its associated techniques has tremendous impact in various discipline and research, from computer, engineering, architecture, humanities, social science to system biology. However in recent years epidemiology can be said to utilizes these potentials of network theory more than any other discipline. Graph which has been considered as the processor in network theory has a close relationship with epidemiology that dated as far back as early 1900 [1]. This is because the earliest models of infectious disease transfer were in a form of compartment which defines a graph even though adequate knowledge of mathematical computation and mechanistic behavior is scarce. This paper introduces a new type of disease propagation on network utilizing the potentials of neutrosophic algebraic group structures and graph theory.展开更多
The n-γ discrimination performance of two experimental arrangements based on the rise-time method and the zero-crossing method was compared for a 50.8 mm-diametered and 50.8 mm-high BC501A liquid scintillator coupled...The n-γ discrimination performance of two experimental arrangements based on the rise-time method and the zero-crossing method was compared for a 50.8 mm-diametered and 50.8 mm-high BC501A liquid scintillator coupled to a 50.8 mm-diametered 9807B photomultiplier in this work. The low energy limitation of the detected neutron with different detector high voltages and the figure of merit of the n-γ discrimination in four neutron energy regions (1–2 MeV, 0.75–1 MeV, 0.5–0.75 MeV and below 0.5 MeV) were studied by using the Am-Be neutron source. Under a time statistical model of the photoelectron emission process in scintillation counters, the intrinsic capability of the n-γ discrimination performance under the optimal condition was evaluated. The experimental results of the zero-crossing method demonstrate a better n-γ. discrimination performance than those of the rise-time method, which is consistent with the calculated results.展开更多
文摘Network theory and its associated techniques has tremendous impact in various discipline and research, from computer, engineering, architecture, humanities, social science to system biology. However in recent years epidemiology can be said to utilizes these potentials of network theory more than any other discipline. Graph which has been considered as the processor in network theory has a close relationship with epidemiology that dated as far back as early 1900 [1]. This is because the earliest models of infectious disease transfer were in a form of compartment which defines a graph even though adequate knowledge of mathematical computation and mechanistic behavior is scarce. This paper introduces a new type of disease propagation on network utilizing the potentials of neutrosophic algebraic group structures and graph theory.
文摘The n-γ discrimination performance of two experimental arrangements based on the rise-time method and the zero-crossing method was compared for a 50.8 mm-diametered and 50.8 mm-high BC501A liquid scintillator coupled to a 50.8 mm-diametered 9807B photomultiplier in this work. The low energy limitation of the detected neutron with different detector high voltages and the figure of merit of the n-γ discrimination in four neutron energy regions (1–2 MeV, 0.75–1 MeV, 0.5–0.75 MeV and below 0.5 MeV) were studied by using the Am-Be neutron source. Under a time statistical model of the photoelectron emission process in scintillation counters, the intrinsic capability of the n-γ discrimination performance under the optimal condition was evaluated. The experimental results of the zero-crossing method demonstrate a better n-γ. discrimination performance than those of the rise-time method, which is consistent with the calculated results.