In this paper we prove a new fixed point theorem in cones and then obtain the existence of triple positive solutions for a class of multi-point boundary value problem.
Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An exa...Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.展开更多
In this paper a fixed point theorem for contracting maps is used to investigate the existence of solutions to a class of higher-order differential inclusions with (k, n-k) conjugate multi-point boundary value problem.
基金Supported by the NSFC(10271095).GG-110-10736-1003,NWNU-KJCXGC-212the Foundation of Major Project of Science and Technology of Chinese Education Ministry
文摘Let ξ i ∈ (0, 1) with 0 < ξ1 < ξ2 < ··· < ξ m?2 < 1, a i , b i ∈ [0,∞) with and . We consider the m-point boundary-value problem
基金The project is supported by National Natural Science Foundation of China(10371006)
文摘In this paper we prove a new fixed point theorem in cones and then obtain the existence of triple positive solutions for a class of multi-point boundary value problem.
文摘Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.
基金supported by the National Natural Science Foundation of China (10971179)
文摘In this paper a fixed point theorem for contracting maps is used to investigate the existence of solutions to a class of higher-order differential inclusions with (k, n-k) conjugate multi-point boundary value problem.