期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Extremal functions for the Moser-Trudinger inequalities on compact Riemannian manifolds 被引量:11
1
作者 LI Yuxiang Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China 《Science China Mathematics》 SCIE 2005年第5期618-648,共31页
Let (M,g) be a compact Riemannian manifold without boundary, and (N,g) a compact Riemannian manifold with boundary. We will prove in this paper that the and can be attained. Our proof uses the blow-up analysis.
关键词 moser-trudinger inequality extremal function n-Lapalace Green function.
原文传递
Best Constants for Moser-Trudinger Inequalities,Fundamental Solutions and One-Parameter Representation Formulas on Groups of Heisenberg Type 被引量:8
2
作者 COHN William S. 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第2期375-390,共16页
We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplaci... We derive the explicit fundamental solutions for a class of degenerate(or singular)one- parameter subelliptic differential operators on groups of Heisenberg(H)type.This extends the result of Kaplan for the sub-Laplacian on H-type groups,which in turn generalizes Folland's result on the Heisenberg group.As an application,we obtain a one-parameter representation formula for Sobolev functions of compact support on H-type groups.By choosing the parameter equal to the homogeneous dimension Q and using the Mose-Trudinger inequality for the convolutional type operator on stratified groups obtained in[18].we get the following theorem which gives the best constant for the Moser- Trudiuger inequality for Sobolev functions on H-type groups. Let G be any group of Heisenberg type whose Lie algebra is generated by m left invariant vector fields and with a q-dimensional center.Let Q=m+2q.Q'=Q-1/Q and Then. with A_Q as the sharp constant,where ▽G denotes the subelliptic gradient on G. This continues the research originated in our earlier study of the best constants in Moser-Trudinger inequalities and fundamental solutions for one-parameter subelliptic operators on the Heisenberg group [18]. 展开更多
关键词 Heisenberg group Groups of Heisenberg type Sobolev inequalities moser-trudinger inequalities Best constants One-Parameter representation formulas Fundamental solutions
原文传递
Trace inequalities, isocapacitary inequalities, and regularity of the complex Hessian equations
3
作者 Jiaxiang Wang Bin Zhou 《Science China Mathematics》 SCIE CSCD 2024年第3期557-576,共20页
In this paper, we study the relations between trace inequalities(Sobolev and Moser-Trudinger types), isocapacitary inequalities, and the regularity of the complex Hessian and Monge-Amp`ere equations with respect to a ... In this paper, we study the relations between trace inequalities(Sobolev and Moser-Trudinger types), isocapacitary inequalities, and the regularity of the complex Hessian and Monge-Amp`ere equations with respect to a general nonnegative Borel measure. We obtain a quantitative characterization for these relations through the properties of the capacity-minimizing functions. 展开更多
关键词 complex Monge-Ampère equations plurisubharmonic functions Sobolev inequality moser-trudinger inequality
原文传递
An Interpolation of Hardy Inequality and Moser–Trudinger Inequality on Riemannian Manifolds with Negative Curvature 被引量:2
4
作者 Yan Qing DONG Qiao Hua YANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第7期856-866,共11页
Let M be a complete, simply connected Riemannian manifold with negative curvature. We obtain an interpolation of Hardy inequality and Moser-Trudinger inequality on M. Furthermore, the constant we obtain is sharp.
关键词 moser-trudinger inequality Hardy inequality Riemannian manifold negative curvature
原文传递
Remarks on the Extremal Functions for the Moser-Trudinger Inequality 被引量:2
5
作者 Yu Xiang LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2006年第2期545-550,共6页
We will show in this paper that if A is very close to 1, thenI(M,λ,m) =supu∈H0^1,n(m),∫m|△↓u|^ndV=1∫Ω(e^αn|u|^n/(n-1)-λm∑k=1|αnun/(n-1)|k/k!)dVcan be attained, where M is a compact-manifold ... We will show in this paper that if A is very close to 1, thenI(M,λ,m) =supu∈H0^1,n(m),∫m|△↓u|^ndV=1∫Ω(e^αn|u|^n/(n-1)-λm∑k=1|αnun/(n-1)|k/k!)dVcan be attained, where M is a compact-manifold with boundary. This result gives a counter-example to the conjecture of de Figueiredo and Ruf in their paper titled "On an inequality by Trudinger and Moser and related elliptic equations" (Comm. Pure. Appl. Math., 55, 135-152, 2002). 展开更多
关键词 moser-trudinger inequality extremal function
原文传递
Extremal Functions of the Singular Moser-Trudinger Inequality Involving the Eigenvalue 被引量:4
6
作者 ZHOU Changliang ZHOU Chunqin 《Journal of Partial Differential Equations》 CSCD 2018年第1期71-96,共26页
In this paper, we derive the singular Moser-Trudinger inequality which in-volves the first eigenvalue and several singular points, and further prove the existenceof the extremal functions for the relative Moser-Trudin... In this paper, we derive the singular Moser-Trudinger inequality which in-volves the first eigenvalue and several singular points, and further prove the existenceof the extremal functions for the relative Moser-Trudinger functional. Since the prob-lems involve more complicated norm and multiple singular points, not only we can'tuse the symmetrization to deal with a one-dimensional inequality, but also the pro-cesses of the blow-up analysis become more delicate. In particular, the new inequalityis more general than that of [1, 2]. 展开更多
关键词 Singular moser-trudinger inequlaity existence of extremal functions blow up anal-ysis.
原文传递
Anisotropic Moser-Trudinger Inequality Involving L^(n) Norm in the Entire Space R^(n)
7
作者 Ru Long XIE 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第12期2427-2451,共25页
Let F:R^(n)-→[0,+∞)be a convex function of class C^(2)(R^(n)/{0})which is even and positively homogeneous of degree 1,and its polar F0 represents a Finsler metric on R^(n).The anisotropic Sobolev norm in W^(1,n)(R^(... Let F:R^(n)-→[0,+∞)be a convex function of class C^(2)(R^(n)/{0})which is even and positively homogeneous of degree 1,and its polar F0 represents a Finsler metric on R^(n).The anisotropic Sobolev norm in W^(1,n)(R^(n))is defined by||u||F=(∫_(R_(n)(F^(n)(↓△u)+|u|^(n)dx)^(1/n)In this paper,the following sharp anisotropic Moser-Trudinger inequality involving L^(n)norm u∈W^(1,n)^(SUP)(R^(n),||u||F≤1∫_(R^(n))Ф(λ_(n)|u|n/n-1(1+a||u||^(n)_(n)1/n-1)dx<+∞in the entire space R^(n)for any 0<a<1 is estabished,whereФ(t)=e^(t)-∑^(n-2)_(j=0)tj/j!,λ_(n)=n^(n/n-1)k_(n)1/n-1 and kn is the volume of the unit Wulf ball in Rn.It is also shown that the above supremum is infinity for all α≥1.Moreover,we prove the supremum is attained,that is,there exists a maximizer for the above supremum whenα>O is sufficiently small. 展开更多
关键词 moser-trudinger inequality anisotropic Sobolev norm blow up analysis extremal func-tion unbounded domain
原文传递
A Multiplicity Result for a Singular and Nonhomogeneous Elliptic Problem in R^n 被引量:2
8
作者 ZHAO Liang 《Journal of Partial Differential Equations》 2012年第1期90-102,共13页
We establish sufficient conditions under which the quasilinear equation -div(|△↓u|^n-2△↓u)+V(x)|u|^n-2u=f(x,u)/|x|^β+εh(x) in R^n,has at least two nontrivial weak solutions in W^1,n(R^n) when ... We establish sufficient conditions under which the quasilinear equation -div(|△↓u|^n-2△↓u)+V(x)|u|^n-2u=f(x,u)/|x|^β+εh(x) in R^n,has at least two nontrivial weak solutions in W^1,n(R^n) when ε 〉 0 is small enough, 0 〈β 〈 n, V is a continuous potential, f(x,u) behaves like exp{γ|u|^n/(n-1) } as |u|→∞ for some γ 〉 0 and h 0 belongs to the dual space of W^1,n (Rn). 展开更多
关键词 moser-trudinger inequality exponential growth.
原文传递
A Singular Moser-Trudinger Inequality on Metric Measure Space
9
作者 GUI Yaoting 《Journal of Partial Differential Equations》 CSCD 2022年第4期331-343,共13页
Let(X,d,μ)be a metric space with a Borel-measureμ,supposeμsatisfies the Ahlfors-regular condition,i.e.birs≤μu(Br(x))≤b2rs,VBr(x)CX,r>0,where bi,b2 are two positive constants and s is the volume growth exponen... Let(X,d,μ)be a metric space with a Borel-measureμ,supposeμsatisfies the Ahlfors-regular condition,i.e.birs≤μu(Br(x))≤b2rs,VBr(x)CX,r>0,where bi,b2 are two positive constants and s is the volume growth exponent.In this paper,we mainly study two things,one is to consider the best constant of the Moser-Trudinger inequality on such metric space under the condition that s is not less than 2.The other is to study the generalized Moser-Trudinger inequality with a singular Weight. 展开更多
关键词 Metric measure space singular moser-trudinger inequality Ahlfors regularity
原文传递
A Priori Estimate for the Complex Monge-Ampère Equation 被引量:1
10
作者 Jiaxiang Wang Xu-Jia Wang Bin Zhou 《Peking Mathematical Journal》 2021年第1期143-157,共15页
In this paper,we use the Sobolev type inequality in Wang et al.(Moser-Trudinger inequality for the complex Monge-Ampère equation,arXiv:2003.06056 v1(2020))to establish the uniform estimate and the Hölder con... In this paper,we use the Sobolev type inequality in Wang et al.(Moser-Trudinger inequality for the complex Monge-Ampère equation,arXiv:2003.06056 v1(2020))to establish the uniform estimate and the Hölder continuity for solutions to the com-plex Monge-Ampère equation with the right-hand side in Lp for any given p>1.Our proof uses various PDE techniques but not the pluripotential theory. 展开更多
关键词 Complex Monge-Ampère equation moser-trudinger inequality REGULARITY
原文传递
A singular Moser-Trudinger inequality for mean value zero functions in dimension two
11
作者 Xiaobao Zhu 《Science China Mathematics》 SCIE CSCD 2021年第11期2521-2538,共18页
Let Ω■R^(2) be a smooth bounded domain with 0∈■Ω.In this paper,we prove that for anyβ∈(0,1),the supremum u∈W^(1,2(Ω)),∫_(Ω)^(sup) udx=0,∫_(Ω)|▽u|^(2)dx≤1∫_(Ω)e^(2π(1-β)u^(2))/|x|^(2β)dx is finite a... Let Ω■R^(2) be a smooth bounded domain with 0∈■Ω.In this paper,we prove that for anyβ∈(0,1),the supremum u∈W^(1,2(Ω)),∫_(Ω)^(sup) udx=0,∫_(Ω)|▽u|^(2)dx≤1∫_(Ω)e^(2π(1-β)u^(2))/|x|^(2β)dx is finite and can be attained.This partially generalizes a well-known work of Chang and Yang(1988)who have obtained the inequality whenβ=0. 展开更多
关键词 singular moser-trudinger inequality mean value zero BLOW-UP
原文传递
Well- and Ill-Posedness Issues for a Class of 2D Wave Equation with Exponential Growth
12
作者 MAHOUACHI Olfa SAANOUNI Tarek 《Journal of Partial Differential Equations》 2011年第4期361-384,共24页
Extending the previous work [1], we establish well-posedness results for a more general class of semilinear wave equations with exponential growth. First, we investigate the well-posedness in the energy space. Then, w... Extending the previous work [1], we establish well-posedness results for a more general class of semilinear wave equations with exponential growth. First, we investigate the well-posedness in the energy space. Then, we prove the propagation of the regularity in the Sobolev spaces HS(IR^2) with s 〉 1. Finally, an ill-posedness result is obtained in HS(IR^2) for s 〈 1. 展开更多
关键词 Nonlinear wave equation WELL-POSEDNESS ILL-POSEDNESS moser-trudinger inequality finite speed of propagation.
原文传递
Convergence of the Generalized Kähler-Ricci Flow
13
作者 Jiawei Liu Yue Wang 《Communications in Mathematics and Statistics》 SCIE 2015年第2期239-261,共23页
In this paper,we consider the convergence of the generalized Kähler-Ricci flow with semi-positive twisted formθon Kähler manifold M.We give detailed proofs of the uniform Sobolev inequality and some uniform... In this paper,we consider the convergence of the generalized Kähler-Ricci flow with semi-positive twisted formθon Kähler manifold M.We give detailed proofs of the uniform Sobolev inequality and some uniform estimates for the metric potential and the generalized Ricci potential along the flow.Then assuming that there exists a generalized Kähler-Einstein metric,if the twisting formθis strictly positive at a point or M admits no nontrivial Hamiltonian holomorphic vector field,we prove that the generalized Kähler-Ricci flow must converge in C^(∞)topology to a generalized Kähler-Einstein metric exponentially fast,where we get the exponential decay without using the Futaki invariant. 展开更多
关键词 Complex Monge-Ampère equation Generalized Kähler-Einstein metric Sobolev inequality moser-trudinger type inequality
原文传递
Singular Moser-Trudinger Inequality Involving L^(n) Norm in the Entire Euclidean Space
14
作者 Changliang Zhou Chunqin Zhou 《Communications in Mathematics and Statistics》 SCIE 2021年第4期467-501,共35页
In this paper,we investigate a singular Moser-Trudinger inequality involving L^(n) norm in the entire Euclidean space.The blow-up procedures are used for the maximizing sequence.Then we obtain the existence of extrema... In this paper,we investigate a singular Moser-Trudinger inequality involving L^(n) norm in the entire Euclidean space.The blow-up procedures are used for the maximizing sequence.Then we obtain the existence of extremal functions for this singular geometric inequality in whole space.In general,W^(1,n)(R^(n))→L^(q)(R^(n))is a continuous embedding but not compact.But in our case we can prove that W^(1,n)(R^(n))→L^(n)(R^(n))is a compact embedding.Combining the compact embedding W^(1,n)(R^(n))→Lq(R^(n),|x|^(−s)dx)for all q≥n and 0<s<n in[18],we establish the theorems for any 0≤α<1. 展开更多
关键词 moser-trudinger inequality Blow-up analysis Existence of extremal functions
原文传递
平面上一类椭圆问题无穷多解的存在性
15
作者 刘硕磊 陆秋平 《扬州大学学报(自然科学版)》 CAS 北大核心 2023年第3期11-15,共5页
运用山路引理,证明了平面上一类带有次线性项的椭圆问题无穷多球对称解及其最低能量解的存在性。
关键词 椭圆方程 无穷多解 次线性 moser-trudinger不等式 山路引理
下载PDF
带奇点的各向异性Moser-Trudinger不等式 被引量:1
16
作者 胡彬 陈火弟 《东华理工大学学报(自然科学版)》 CAS 2018年第3期293-296,共4页
Moser-Trudinger不等式是一类重要的不等式,它在几何分析和偏微分方程解的存在性问题中都有着广泛应用。基于Moser-Trudinger不等式推广到各向异性Moser-Trudinger不等式的方法,利用余面积公式和凸对称重排法,把各向异性Moser-Trudinge... Moser-Trudinger不等式是一类重要的不等式,它在几何分析和偏微分方程解的存在性问题中都有着广泛应用。基于Moser-Trudinger不等式推广到各向异性Moser-Trudinger不等式的方法,利用余面积公式和凸对称重排法,把各向异性Moser-Trudinger不等式继续推广到了带一个奇点的各向异性Moser-Trudinger不等式。 展开更多
关键词 moser-trudinger不等式 凸对称重排 各向异性
下载PDF
具有N-各向异性拉普拉斯算子的超线性问题的先验界
17
作者 裴瑞昌 《数学学报(中文版)》 CSCD 北大核心 2017年第5期823-832,共10页
通过改进Brezis和Merle的方法,结合Moser-Trudinger不等式,移动平面方法及比较原理,得到了方程-Q_Nu=f(u),u∈W_0^(1,N)(Ω)的正解的先验界,其中Ω是R^N中的一个有界光滑区域,非线性项f至多具有指数型增长.
关键词 QN-拉普拉斯算子 移动平面 先验界 moser-trudinger不等式
原文传递
球面上的平均场方程
18
作者 桂长峰 胡烨耀 谢维洪 《数学理论与应用》 2021年第3期13-37,共25页
本文介绍球面上平均场类方程的新进展及公开问题.特别地,我们引入一些新的Aubin-Onofri型不等式,同时讨论这些不等式与平均场类方程之间的紧密联系.
关键词 平均场方程 Paneitz算子 共形度量 Szeg?极限定理 moser-trudinger不等式
下载PDF
The Moser-Trudinger-Onofri Inequality 被引量:1
19
作者 Jean DOLBEAULT Maria J.ESTEBAN Gaspard JANKOWIAK 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第5期777-802,共26页
This paper is devoted to results on the Moser-Trudinger-Onofri inequality, or the Onofri inequality for brevity. In dimension two this inequality plays a role similar to that of the Sobolev inequality in higher dimens... This paper is devoted to results on the Moser-Trudinger-Onofri inequality, or the Onofri inequality for brevity. In dimension two this inequality plays a role similar to that of the Sobolev inequality in higher dimensions. After justifying this statement by recovering the Onofri inequality through various limiting procedures and after reviewing some known results, the authors state several elementary remarks.Various new results are also proved in this paper. A proof of the inequality is given by using mass transportation methods(in the radial case), consistently with similar results for Sobolev inequalities. The authors investigate how duality can be used to improve the Onofri inequality, in connection with the logarithmic Hardy-Littlewood-Sobolev inequality.In the framework of fast diffusion equations, it is established that the inequality is an entropy-entropy production inequality, which provides an integral remainder term. Finally,a proof of the inequality based on rigidity methods is given and a related nonlinear flow is introduced. 展开更多
关键词 moser-trudinger-Onofri inequality DUALITY Mass transportation Fast diffusion equation RIGIDITY
原文传递
Liouville Energy on a Topological Two Sphere
20
作者 XiuXiong Chen Meijun Zhu 《Communications in Mathematics and Statistics》 SCIE 2013年第4期369-385,共17页
In this paper we shall give an analytic proof of the fact that the Liouville energy on a topological two sphere is bounded from below.Our proof does not rely on the uniformization theorem and the Onofri inequality,thu... In this paper we shall give an analytic proof of the fact that the Liouville energy on a topological two sphere is bounded from below.Our proof does not rely on the uniformization theorem and the Onofri inequality,thus it is essentially needed in the alternative proof of the uniformization theorem via the Calabi flow.Such an analytic approach also sheds light on how to obtain the boundedness for E1 energy in the study of general Kähler manifolds. 展开更多
关键词 Uniformization theorem Liouville energy moser-trudinger-Onofri inequality Blowup analysis
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部