期刊文献+

Anisotropic Moser-Trudinger Inequality Involving L^(n) Norm in the Entire Space R^(n)

原文传递
导出
摘要 Let F:R^(n)-→[0,+∞)be a convex function of class C^(2)(R^(n)/{0})which is even and positively homogeneous of degree 1,and its polar F0 represents a Finsler metric on R^(n).The anisotropic Sobolev norm in W^(1,n)(R^(n))is defined by||u||F=(∫_(R_(n)(F^(n)(↓△u)+|u|^(n)dx)^(1/n)In this paper,the following sharp anisotropic Moser-Trudinger inequality involving L^(n)norm u∈W^(1,n)^(SUP)(R^(n),||u||F≤1∫_(R^(n))Ф(λ_(n)|u|n/n-1(1+a||u||^(n)_(n)1/n-1)dx<+∞in the entire space R^(n)for any 0<a<1 is estabished,whereФ(t)=e^(t)-∑^(n-2)_(j=0)tj/j!,λ_(n)=n^(n/n-1)k_(n)1/n-1 and kn is the volume of the unit Wulf ball in Rn.It is also shown that the above supremum is infinity for all α≥1.Moreover,we prove the supremum is attained,that is,there exists a maximizer for the above supremum whenα>O is sufficiently small.
作者 Ru Long XIE
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第12期2427-2451,共25页 数学学报(英文版)
基金 Supported by Natural Science Foundation of China(Grant Nos.11526212,11721101,11971026) Natural Science Foundation of Anhui Province(Grant No.1608085QA12) Natural Science Foundation of Education Committee of Anhui Province(Grant Nos.KJ2016A506,KJ2017A454) Excellent Young Talents Foundation of Anhui Province(Grant No.GXYQ2020049)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部