摘要
Let F:R^(n)-→[0,+∞)be a convex function of class C^(2)(R^(n)/{0})which is even and positively homogeneous of degree 1,and its polar F0 represents a Finsler metric on R^(n).The anisotropic Sobolev norm in W^(1,n)(R^(n))is defined by||u||F=(∫_(R_(n)(F^(n)(↓△u)+|u|^(n)dx)^(1/n)In this paper,the following sharp anisotropic Moser-Trudinger inequality involving L^(n)norm u∈W^(1,n)^(SUP)(R^(n),||u||F≤1∫_(R^(n))Ф(λ_(n)|u|n/n-1(1+a||u||^(n)_(n)1/n-1)dx<+∞in the entire space R^(n)for any 0<a<1 is estabished,whereФ(t)=e^(t)-∑^(n-2)_(j=0)tj/j!,λ_(n)=n^(n/n-1)k_(n)1/n-1 and kn is the volume of the unit Wulf ball in Rn.It is also shown that the above supremum is infinity for all α≥1.Moreover,we prove the supremum is attained,that is,there exists a maximizer for the above supremum whenα>O is sufficiently small.
基金
Supported by Natural Science Foundation of China(Grant Nos.11526212,11721101,11971026)
Natural Science Foundation of Anhui Province(Grant No.1608085QA12)
Natural Science Foundation of Education Committee of Anhui Province(Grant Nos.KJ2016A506,KJ2017A454)
Excellent Young Talents Foundation of Anhui Province(Grant No.GXYQ2020049)。