In this paper we compare recently developed preliminary test estimator called Preliminary Test Stochastic Restricted Liu Estimator (PTSRLE) with Ordinary Least Square Estimator (OLSE) and Mixed Estimator (ME) in the M...In this paper we compare recently developed preliminary test estimator called Preliminary Test Stochastic Restricted Liu Estimator (PTSRLE) with Ordinary Least Square Estimator (OLSE) and Mixed Estimator (ME) in the Mean Square Error Matrix (MSEM) sense for the two cases in which the stochastic restrictions are correct and not correct. Finally a numerical example and a Monte Carlo simulation study are done to illustrate the theoretical findings.展开更多
This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established with...This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.展开更多
In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic ...In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.展开更多
文摘In this paper we compare recently developed preliminary test estimator called Preliminary Test Stochastic Restricted Liu Estimator (PTSRLE) with Ordinary Least Square Estimator (OLSE) and Mixed Estimator (ME) in the Mean Square Error Matrix (MSEM) sense for the two cases in which the stochastic restrictions are correct and not correct. Finally a numerical example and a Monte Carlo simulation study are done to illustrate the theoretical findings.
文摘This paper presents a posteriori residual error estimator for the new mixed el-ement scheme for second order elliptic problem on anisotropic meshes. The reliability and efficiency of our estimator are established without any regularity assumption on the mesh.
基金supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (0506011200702)National Natural Science Foundation of China+2 种基金Tian Yuan Special Foundation (10926059)Foundation of Zhejiang Educational Committee (Y200803920)Scientific Research Foundation of Hangzhou Dianzi University(KYS025608094)
文摘In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.