In many organisms, the difference in codon usage patterns among genes reflects variation in local base compositional biases and the intensity of natural selection. In this study, a comparative analysis was performed t...In many organisms, the difference in codon usage patterns among genes reflects variation in local base compositional biases and the intensity of natural selection. In this study, a comparative analysis was performed to investigate the characteristics of codon bias and factors in shaping the codon usage patterns among mitochondrion, chloroplast and nuclear genes in common wheat (Triticum aestivum L.). GC contents in nuclear genes were higher than that in mitochondrion and chloroplast genes. The neutrality and correspondence analyses indicated that the codon usage in nuclear genes would be a result of relative strong mutational bias, while the codon usage patterns of mitochondrion and chloroplast genes were more conserved in GC content and influenced by translation level. The Parity Rule 2 (PR2) plot analysis showed that pyrimidines were used more frequently than purines at the third codon position in the three genomes. In addition, using a new alterative strategy, 11, 12, and 24 triplets were defined as preferred codons in the mitochondrion, chloroplast and nuclear genes, respectively. These findings suggested that the mitochondrion, chloroplast and nuclear genes shared particularly different features of codon usage and evolutionary constraints.展开更多
Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement o...Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement of heat stress in inducing oxidative stress has received much interest. Oxidative stress is defined as the presence of reactive species in excess of the available antioxidant capacity of animal cells. Reactive species can modify several biologically cellular macromolecules and can interfere with cell signaling pathways. Furthermore, during the last decade, there has been an ever-increasing interest in the use of a wide array of natural feed-delivered phytochemicals that have potential antioxidant properties for poultry. In light of this, the current review aims to(1) summarize the mechanisms through which heat stress triggers excessive superoxide radical production in the mitochondrion and progresses into oxidative stress,(2) illustrate that this pathophysiology is dependent on the intensity and duration of heat stress,(3) present different nutritional strategies for mitigation of mitochondrial dysfunction, with particular focus on antioxidant phytochemicals.Oxidative stress that occurs with heat exposure can be manifest in all parts of the body; however, mitochondrial dysfunction underlies oxidative stress. In the initial phase of acute heat stress, mitochondrial substrate oxidation and electron transport chain activity are increased resulting in excessive superoxide production. During the later stage of acute heat stress, down-regulation of avian uncoupling protein worsens the oxidative stress situation causing mitochondrial dysfunction and tissue damage. Typically, antioxidant enzyme activities are upregulated. Chronic heat stress, however, leads to downsizing of mitochondrial metabolic oxidative capacity, up-regulation of avian uncoupling protein, a clear alteration in the pattern of antioxidant enzyme activities, and depletion of antioxidant reserves.Some phytochemicals, such as vario展开更多
基金Supported by the Sate Key Basic Research and Development Plan of China (2003CB715904) and the National Science Foundation for 0verseas Distinguished Young Scholar (30428003)
文摘In many organisms, the difference in codon usage patterns among genes reflects variation in local base compositional biases and the intensity of natural selection. In this study, a comparative analysis was performed to investigate the characteristics of codon bias and factors in shaping the codon usage patterns among mitochondrion, chloroplast and nuclear genes in common wheat (Triticum aestivum L.). GC contents in nuclear genes were higher than that in mitochondrion and chloroplast genes. The neutrality and correspondence analyses indicated that the codon usage in nuclear genes would be a result of relative strong mutational bias, while the codon usage patterns of mitochondrion and chloroplast genes were more conserved in GC content and influenced by translation level. The Parity Rule 2 (PR2) plot analysis showed that pyrimidines were used more frequently than purines at the third codon position in the three genomes. In addition, using a new alterative strategy, 11, 12, and 24 triplets were defined as preferred codons in the mitochondrion, chloroplast and nuclear genes, respectively. These findings suggested that the mitochondrion, chloroplast and nuclear genes shared particularly different features of codon usage and evolutionary constraints.
基金the Special Research Fund(BOF)of Ghent University(Belgium)for the financial support of Abdol ah Akbarian(grant number 01SF2711)
文摘Heat as a stressor of poultry has been studied extensively for many decades; it affects poultry production on a worldwide basis and has significant impact on well-being and production. More recently, the involvement of heat stress in inducing oxidative stress has received much interest. Oxidative stress is defined as the presence of reactive species in excess of the available antioxidant capacity of animal cells. Reactive species can modify several biologically cellular macromolecules and can interfere with cell signaling pathways. Furthermore, during the last decade, there has been an ever-increasing interest in the use of a wide array of natural feed-delivered phytochemicals that have potential antioxidant properties for poultry. In light of this, the current review aims to(1) summarize the mechanisms through which heat stress triggers excessive superoxide radical production in the mitochondrion and progresses into oxidative stress,(2) illustrate that this pathophysiology is dependent on the intensity and duration of heat stress,(3) present different nutritional strategies for mitigation of mitochondrial dysfunction, with particular focus on antioxidant phytochemicals.Oxidative stress that occurs with heat exposure can be manifest in all parts of the body; however, mitochondrial dysfunction underlies oxidative stress. In the initial phase of acute heat stress, mitochondrial substrate oxidation and electron transport chain activity are increased resulting in excessive superoxide production. During the later stage of acute heat stress, down-regulation of avian uncoupling protein worsens the oxidative stress situation causing mitochondrial dysfunction and tissue damage. Typically, antioxidant enzyme activities are upregulated. Chronic heat stress, however, leads to downsizing of mitochondrial metabolic oxidative capacity, up-regulation of avian uncoupling protein, a clear alteration in the pattern of antioxidant enzyme activities, and depletion of antioxidant reserves.Some phytochemicals, such as vario