Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition(EMT), during which cells dedifferentiate from a relative...Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition(EMT), during which cells dedifferentiate from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas(TCGA), have defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer and glioblastoma. However, recent analyses have shown that gene expression-based classifications of mesenchymal subtypes often do not associate with poor survival. This "paradox" can be ameliorated using integrated analysis that combines multiple data types. We recently found that integrating m RNA and micro RNA(mi RNA) data revealed an integrated mesenchymal subtype that is consistently associated with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 major mi RNAs and 214 m RNAs. Among the 8 mi RNAs, 4 are known to be regulators of EMT. This review provides a summary of these 8 mi RNAs, which were associated with the integrated mesenchymal subtype of serous ovarian cancer.展开更多
基金supported by the U.S. National Institutes of Health grants (U24 CA143835 to IS and WZ, P50 CA083639 and P50 CA098258 to AKS)MD Anderson support grant (CA016672) to WZ+6 种基金a grant from the Blanton-Davis Ovarian Cancer Research Program to WZgrants from the Program for Changjiang Scholars, Innovative Research Team in University (PCSIRT) in Chinathe National Key Scientifi c and Technological Project (2011ZX0 9307-001-04)Tianjin Science and Technology Committee Foundation (09ZCZDSF04700) to KCa grant from National Nature Science Foundation of China (#81201651) to YSa grant from Fondazione CARIPLO (2013-0865) to DMthe A. Lavoy Moore Endowment Fund to YS and DY
文摘Metastasis is the main cause of cancer mortality. One of the initiating events of cancer metastasis of epithelial tumors is epithelial-to-mesenchymal transition(EMT), during which cells dedifferentiate from a relatively rigid cell structure/morphology to a flexible and changeable structure/morphology often associated with mesenchymal cells. The presence of EMT in human epithelial tumors is reflected by the increased expression of genes and levels of proteins that are preferentially present in mesenchymal cells. The combined presence of these genes forms the basis of mesenchymal gene signatures, which are the foundation for classifying a mesenchymal subtype of tumors. Indeed, tumor classification schemes that use clustering analysis of large genomic characterizations, like The Cancer Genome Atlas(TCGA), have defined mesenchymal subtype in a number of cancer types, such as high-grade serous ovarian cancer and glioblastoma. However, recent analyses have shown that gene expression-based classifications of mesenchymal subtypes often do not associate with poor survival. This "paradox" can be ameliorated using integrated analysis that combines multiple data types. We recently found that integrating m RNA and micro RNA(mi RNA) data revealed an integrated mesenchymal subtype that is consistently associated with poor survival in multiple cohorts of patients with serous ovarian cancer. This network consists of 8 major mi RNAs and 214 m RNAs. Among the 8 mi RNAs, 4 are known to be regulators of EMT. This review provides a summary of these 8 mi RNAs, which were associated with the integrated mesenchymal subtype of serous ovarian cancer.