This paper proposes a vertex-estimation-based, feature-preserving smoothingtechnique for meshes. A robust mesh smoothing operator called mean value coordinates flow isintroduced to modify mean curvature flow and make ...This paper proposes a vertex-estimation-based, feature-preserving smoothingtechnique for meshes. A robust mesh smoothing operator called mean value coordinates flow isintroduced to modify mean curvature flow and make it more stable. Also the paper proposes athree-pass vertex estimation based on bilateral filtering of local neighbors which is transferredfrom image processing settings and a Quasi-Laplacian operation, derived from the standard Laplacianoperator, is performed to increase the smoothness order of the mesh rapidly whilst denoising meshesefficiently, preventing volume shrinkage as well as preserving sharp features of the mesh. Comparedwith previous algorithms, the result shows it is simple, efficient and robust.展开更多
<div style="text-align:justify;"> In order to speed up the global optimization-based mesh smoothing, an enhanced steepest descent method is presented in the paper. Numerical experiment results show tha...<div style="text-align:justify;"> In order to speed up the global optimization-based mesh smoothing, an enhanced steepest descent method is presented in the paper. Numerical experiment results show that the method performs better than the steepest descent method in the global smoothing. We also presented a physically-based interpretation to explain why the method works better than the steepest descent method. </div>展开更多
文摘This paper proposes a vertex-estimation-based, feature-preserving smoothingtechnique for meshes. A robust mesh smoothing operator called mean value coordinates flow isintroduced to modify mean curvature flow and make it more stable. Also the paper proposes athree-pass vertex estimation based on bilateral filtering of local neighbors which is transferredfrom image processing settings and a Quasi-Laplacian operation, derived from the standard Laplacianoperator, is performed to increase the smoothness order of the mesh rapidly whilst denoising meshesefficiently, preventing volume shrinkage as well as preserving sharp features of the mesh. Comparedwith previous algorithms, the result shows it is simple, efficient and robust.
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.90405016)教育部新世纪优秀人才支持计划(the New Century Excellent Talents in University Foundation of China)陕西省自然科学基金(the Natural Science Foundation of Shaanxi Province of China under Grant No.2006A05)。
文摘<div style="text-align:justify;"> In order to speed up the global optimization-based mesh smoothing, an enhanced steepest descent method is presented in the paper. Numerical experiment results show that the method performs better than the steepest descent method in the global smoothing. We also presented a physically-based interpretation to explain why the method works better than the steepest descent method. </div>