Einstein described the mass-energy equivalence as the most important result of special relativity. But more than a century after Einstein first derived the relationship between mass-energy equivalence (or mass-energy ...Einstein described the mass-energy equivalence as the most important result of special relativity. But more than a century after Einstein first derived the relationship between mass-energy equivalence (or mass-energy equation), questions left for people are how to understand that mass and energy are somehow equivalent, and how to give the dynamical process for the conversion from mass to energy (or vice versa). This paper first interprets the formula of mass-energy equivalence published by Einstein in 1905, and then gives the equivalence relationship of mass-energy transition based on the dynamics of particle orthogonal collision. As a result, the orthogonal collision of two high-energy mass particles can generate a huge mass-energy density, equivalent to the total energy of N new particles, which is a one-way dynamic process that generates new mass-energy density and new matter. This conversion of mass into energy has nothing to do with special relativity.展开更多
By studying of a slender body moving in a fluid wave-medium, e.g., in air or in shallow water, it was found that the hydrodynamic momentum mass and the total energy of the fluid field can be expressed in forms of and ...By studying of a slender body moving in a fluid wave-medium, e.g., in air or in shallow water, it was found that the hydrodynamic momentum mass and the total energy of the fluid field can be expressed in forms of and E=mc<sup>2</sup>, where v is the body moving speed, c is the wave speed and is the hydrodynamic mass at the zero speed. Thus a hydrodynamic analogy to the relativistic particle motion in vacuum can be traced. The velocity dependence of mass and the mass-energy equivalence are universal for any wave medium, which should not be regarded as a consequence of relative Lorentz time-space, but one of the existence of wave in the medium. Its further inference leads to an even more significant physical picture. If the mass particle moves in an unbounded space at a supercritical speed, i.e. , waves are generated and radiated from it, like the Mach waves by the supersonic plane, and the particle itself experiences a resistance as reaction from the wave radiation. By an extension of this analogy, it can be interred from a hydrodynamic superconductive phenomenon that particles or waves can move possibly at a superluminal speed without experiencing any resistance through a tunnel (a bounded space) under certain conditions. Therefore the speed of light is not the limit of our physical world and superluminal phenomena are possible.展开更多
Although the formula of mass-energy equivalence was derived from the hypothesis that the speed of light in free space is constant, conversely, the purpose of this research is to show that a method of probabilistically...Although the formula of mass-energy equivalence was derived from the hypothesis that the speed of light in free space is constant, conversely, the purpose of this research is to show that a method of probabilistically determining whether the speed of light is constant is derived from this formula. By considering the formula of mass-energy equivalence to be a function of the energy of an object moving at speed V, the probability density function (PDF) of the energy can be obtained using the inverse function of this formula, if the speed of light obeys a probability distribution. The main result is that the PDF of the energy diverges to infinity at a certain energy value regardless of the PDF of the speed of light. Thus, when the speed calculated from this value enters a certain range of the speed of light as V increases stepwise from below 299,792,458 m/s, the PDF of the energy should increase abruptly. If not, then the speed of light is constant. This is the method of probabilistically determining whether the speed of light is constant. An experimental method is proposed to confirm this.展开更多
It is well known that the mass of a particle has properties different from Newtonian mechanics. First, it is speed-dependent. Second, it is convertible to energy. These properties were generally thought to be derived ...It is well known that the mass of a particle has properties different from Newtonian mechanics. First, it is speed-dependent. Second, it is convertible to energy. These properties were generally thought to be derived from the principle of relativity (PR). We have conducted a careful examination of the historical records and found that the non-Newtonian properties of mass were derived not so much based on PR, but more based on Einstein’s intuitive thinking that radiation and matters behave similarly. This gives us a hint: Since both photon and electron can behave as a particle as well as a wave, can such a wave nature account for the deviations from Newtonian mechanics? Thus, we have developed a wave model to describe the motion of a free particle with or without rest mass. We found that both the speed-dependence of mass and the mass-energy equivalence can indeed be derived based on the wave properties of a particle. This wave hypothesis has several advantages;it can naturally explain why particles can be created in the vacuum and why a particle cannot travel faster than the speed of light.展开更多
By combing the mass energy equivalence formula, E=mc2, with the speed of light and gravity formula, , a new equation for energy is derived. The Energy Electromagnetic Force Equivalence is used to explain the rotationa...By combing the mass energy equivalence formula, E=mc2, with the speed of light and gravity formula, , a new equation for energy is derived. The Energy Electromagnetic Force Equivalence is used to explain the rotational torque of the stars, planets, and galaxy. A greater understanding of the universe is achieved with a simple mathematical expression. Nuclear energy from the Sun is converted to an electrical force which pervades the universe and gives the bodies within it, rotational motion. It is a macro equation for action at a distance. The equation suggests that nuclear energy and electromagnetic force is one of the most basic equations of the universe. It is proposed that there is only one all-encompassing force of the universe, the electromagnetic force.展开更多
In earlier papers [1]-[4], it was shown that the consistency of the concept of time with motion requires time and distance to be of the same dimension, and thus measured by the same unit. The arising reduced system of...In earlier papers [1]-[4], it was shown that the consistency of the concept of time with motion requires time and distance to be of the same dimension, and thus measured by the same unit. The arising reduced system of units revealed that mass and energy were only different facets of one entity, and resulted in the well-known mass-energy equivalence formula as a natural consequence. The physical space can be identified with any inertial frame, but when it comes to comparing the results of measurements in two frames, or more, only one frame, say S, can be taken stationary and identified with the physical space, whereas all other inertial frames are moving relative to S. The equivalence of inertial frames as sites of one physical world implies that an intrinsic units system of length, time, mass and charge should be defined in terms of basic constituent physical blocks that have the same identity in all inertial frames. A basic feature of the universal space and time theory (UST) is that the same one time prevails in all inertial frames. The scaling transformations (STs) that relate the geometric distances in two frames, S (s) when chosen the stationary frame, are derived, and applied to explain the Doppler’s effect. The time distance between a moving object in S and an observer depends on its state of motion;and the Euclidean form of the STs is employed to explain arrival of some meta-stable at the earth’s surface despite its short lifetime. The quantitative predicted Doppler’s effect, which is in a striking agreement with the Ives-Stilwell experimental results, coincides with the relativistic prediction for longitudinal motion, but yet predicts a complete absence of a transverse effect at a right angle. In coming parts of this work it will be shown that the UST explains elaborately the drag effect, stellar aberration, and produces naturally the relativistic mechanics. The UST will also be completed through deriving the scaling transformations of the second type, by which the null results of Michelson and Mor展开更多
From Lagrangian formalism as in Classical Field Theory and within the theoretical scheme of the Hamilton-Type Variational Principle, the mass-energy equivalence principle for any fluid is obtained.
文摘Einstein described the mass-energy equivalence as the most important result of special relativity. But more than a century after Einstein first derived the relationship between mass-energy equivalence (or mass-energy equation), questions left for people are how to understand that mass and energy are somehow equivalent, and how to give the dynamical process for the conversion from mass to energy (or vice versa). This paper first interprets the formula of mass-energy equivalence published by Einstein in 1905, and then gives the equivalence relationship of mass-energy transition based on the dynamics of particle orthogonal collision. As a result, the orthogonal collision of two high-energy mass particles can generate a huge mass-energy density, equivalent to the total energy of N new particles, which is a one-way dynamic process that generates new mass-energy density and new matter. This conversion of mass into energy has nothing to do with special relativity.
文摘By studying of a slender body moving in a fluid wave-medium, e.g., in air or in shallow water, it was found that the hydrodynamic momentum mass and the total energy of the fluid field can be expressed in forms of and E=mc<sup>2</sup>, where v is the body moving speed, c is the wave speed and is the hydrodynamic mass at the zero speed. Thus a hydrodynamic analogy to the relativistic particle motion in vacuum can be traced. The velocity dependence of mass and the mass-energy equivalence are universal for any wave medium, which should not be regarded as a consequence of relative Lorentz time-space, but one of the existence of wave in the medium. Its further inference leads to an even more significant physical picture. If the mass particle moves in an unbounded space at a supercritical speed, i.e. , waves are generated and radiated from it, like the Mach waves by the supersonic plane, and the particle itself experiences a resistance as reaction from the wave radiation. By an extension of this analogy, it can be interred from a hydrodynamic superconductive phenomenon that particles or waves can move possibly at a superluminal speed without experiencing any resistance through a tunnel (a bounded space) under certain conditions. Therefore the speed of light is not the limit of our physical world and superluminal phenomena are possible.
文摘Although the formula of mass-energy equivalence was derived from the hypothesis that the speed of light in free space is constant, conversely, the purpose of this research is to show that a method of probabilistically determining whether the speed of light is constant is derived from this formula. By considering the formula of mass-energy equivalence to be a function of the energy of an object moving at speed V, the probability density function (PDF) of the energy can be obtained using the inverse function of this formula, if the speed of light obeys a probability distribution. The main result is that the PDF of the energy diverges to infinity at a certain energy value regardless of the PDF of the speed of light. Thus, when the speed calculated from this value enters a certain range of the speed of light as V increases stepwise from below 299,792,458 m/s, the PDF of the energy should increase abruptly. If not, then the speed of light is constant. This is the method of probabilistically determining whether the speed of light is constant. An experimental method is proposed to confirm this.
文摘It is well known that the mass of a particle has properties different from Newtonian mechanics. First, it is speed-dependent. Second, it is convertible to energy. These properties were generally thought to be derived from the principle of relativity (PR). We have conducted a careful examination of the historical records and found that the non-Newtonian properties of mass were derived not so much based on PR, but more based on Einstein’s intuitive thinking that radiation and matters behave similarly. This gives us a hint: Since both photon and electron can behave as a particle as well as a wave, can such a wave nature account for the deviations from Newtonian mechanics? Thus, we have developed a wave model to describe the motion of a free particle with or without rest mass. We found that both the speed-dependence of mass and the mass-energy equivalence can indeed be derived based on the wave properties of a particle. This wave hypothesis has several advantages;it can naturally explain why particles can be created in the vacuum and why a particle cannot travel faster than the speed of light.
文摘By combing the mass energy equivalence formula, E=mc2, with the speed of light and gravity formula, , a new equation for energy is derived. The Energy Electromagnetic Force Equivalence is used to explain the rotational torque of the stars, planets, and galaxy. A greater understanding of the universe is achieved with a simple mathematical expression. Nuclear energy from the Sun is converted to an electrical force which pervades the universe and gives the bodies within it, rotational motion. It is a macro equation for action at a distance. The equation suggests that nuclear energy and electromagnetic force is one of the most basic equations of the universe. It is proposed that there is only one all-encompassing force of the universe, the electromagnetic force.
文摘In earlier papers [1]-[4], it was shown that the consistency of the concept of time with motion requires time and distance to be of the same dimension, and thus measured by the same unit. The arising reduced system of units revealed that mass and energy were only different facets of one entity, and resulted in the well-known mass-energy equivalence formula as a natural consequence. The physical space can be identified with any inertial frame, but when it comes to comparing the results of measurements in two frames, or more, only one frame, say S, can be taken stationary and identified with the physical space, whereas all other inertial frames are moving relative to S. The equivalence of inertial frames as sites of one physical world implies that an intrinsic units system of length, time, mass and charge should be defined in terms of basic constituent physical blocks that have the same identity in all inertial frames. A basic feature of the universal space and time theory (UST) is that the same one time prevails in all inertial frames. The scaling transformations (STs) that relate the geometric distances in two frames, S (s) when chosen the stationary frame, are derived, and applied to explain the Doppler’s effect. The time distance between a moving object in S and an observer depends on its state of motion;and the Euclidean form of the STs is employed to explain arrival of some meta-stable at the earth’s surface despite its short lifetime. The quantitative predicted Doppler’s effect, which is in a striking agreement with the Ives-Stilwell experimental results, coincides with the relativistic prediction for longitudinal motion, but yet predicts a complete absence of a transverse effect at a right angle. In coming parts of this work it will be shown that the UST explains elaborately the drag effect, stellar aberration, and produces naturally the relativistic mechanics. The UST will also be completed through deriving the scaling transformations of the second type, by which the null results of Michelson and Mor
文摘From Lagrangian formalism as in Classical Field Theory and within the theoretical scheme of the Hamilton-Type Variational Principle, the mass-energy equivalence principle for any fluid is obtained.