期刊文献+
共找到95篇文章
< 1 2 5 >
每页显示 20 50 100
Quantile Regression Based on Laplacian Manifold Regularizer with the Data Sparsity in <i>l</i>1 Spaces
1
作者 Ru Feng Shuang Chen Lanlan Rong 《Open Journal of Statistics》 2017年第5期786-802,共17页
In this paper, we consider the regularized learning schemes based on l1-regularizer and pinball loss in a data dependent hypothesis space. The target is the error analysis for the quantile regression learning. There i... In this paper, we consider the regularized learning schemes based on l1-regularizer and pinball loss in a data dependent hypothesis space. The target is the error analysis for the quantile regression learning. There is no regularized condition with the kernel function, excepting continuity and boundness. The graph-based semi-supervised algorithm leads to an extra error term called manifold error. Part of new error bounds and convergence rates are exactly derived with the techniques consisting of l1-empirical covering number and boundness decomposition. 展开更多
关键词 SEMI-SUPERVISED Learning Conditional QUANTILE Regression l1-regularizer manifold-regularizer Pinball Loss
下载PDF
基于流形正则化非负矩阵分解预测药物-靶蛋白作用关系 被引量:1
2
作者 闫效莺 吴莹 李润洲 《科学技术与工程》 北大核心 2019年第33期325-329,共5页
识别药物-靶蛋白作用关系是当前药物研究的重要内容,其可帮助识别已有药物的新功能,发现药物的“偏靶蛋白”等。现有预测算法对新药物的作用靶蛋白,及新靶蛋白的作用药物预测存在困难,由此提出一种新奇的基于流形正则化非负矩阵分解的... 识别药物-靶蛋白作用关系是当前药物研究的重要内容,其可帮助识别已有药物的新功能,发现药物的“偏靶蛋白”等。现有预测算法对新药物的作用靶蛋白,及新靶蛋白的作用药物预测存在困难,由此提出一种新奇的基于流形正则化非负矩阵分解的新药物/新靶蛋白作用关系预测算法,该方法首先通过聚类算法构建新药物/新靶蛋白的初始作用标签,然后设计引入流形学习正则化约束的非负矩阵分解算法预测药物-靶蛋白作用关系,最后在四个经典数据集中测试,并与最新预测算法BLM-NII、RLS-WNN和WKNKN+WGRMF算法进行比较,证明本文算法可获取较高的预测精度。 展开更多
关键词 药物 靶蛋白 聚类 流形学习正则化 非负矩阵分解
下载PDF
基于改进流形正则化极限学习机的短期电力负荷预测 被引量:33
3
作者 李冬辉 闫振林 +1 位作者 姚乐乐 郑宏宇 《高电压技术》 EI CAS CSCD 北大核心 2016年第7期2092-2099,共8页
为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机... 为提高短期电力负荷预测的精度与效率,提出一种改进流形正则化极限学习机的短期电力负荷预测方法;首先,为了改善极限学习机(ELM)的泛化性能与效率,并解决随机初始化参数导致极限学习机存在的潜在问题,采用流形正则化理论优化极限学习机;其次,针对流形正则化极限学习机中参数的选择,以及流形正则化极限学习机隐层节点选择的问题,提出将贝叶斯优化算法(BOA)融入到流形正则化极限学习机中以优化流形正则化极限学习机(MRELM)。最后,通过实验数据分析,改进流形正则化极限学习机预测方法将预测平均相对误差降低到了1.903%,30次实验的平均相对误差的方差降低到了1.9‰,平均单次运行时间降低到了6.113 s。 展开更多
关键词 短期电力负荷预测 流形正则化 极限学习机 贝叶斯优化算法 平均相对误差 方差
下载PDF
自适应正则化迁移学习的不同工况下滚动轴承故障诊断 被引量:19
4
作者 陈仁祥 朱玉清 +2 位作者 胡小林 赵树恩 张晓 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第8期95-103,共9页
针对不同工况下存在两域分布差异复杂的问题,提出自适应正则化迁移学习的不同工况下滚动轴承故障诊断方法。首先,训练基分类器为目标域预测伪标签,利用联合分布适配对齐两域分布,以减小分布差异;其次,通过流形正则化对目标域数据进一步... 针对不同工况下存在两域分布差异复杂的问题,提出自适应正则化迁移学习的不同工况下滚动轴承故障诊断方法。首先,训练基分类器为目标域预测伪标签,利用联合分布适配对齐两域分布,以减小分布差异;其次,通过流形正则化对目标域数据进一步利用,挖掘数据的潜在分布几何结构,学习目标域数据分布信息;最后,利用在结构风险最小化框架下建立的分类器结合上述两步学习策略,迭代更新伪标签获得最优系数矩阵完成不同工况下滚动轴承故障诊断。在两组滚动轴承数据集上进行实验验证,实验结果显示所提方法识别准确率分别达到了96.38%,94.18%。证明该方法能够有效应对多种工况导致的复杂分布差异,同时具有较好的有效性和可行性。 展开更多
关键词 滚动轴承 不同工况 自适应流形正则化 迁移学习 故障诊断
下载PDF
基于流形正则化域适应随机权神经网络的湿式球磨机负荷参数软测量 被引量:15
5
作者 贺敏 汤健 +1 位作者 郭旭琦 阎高伟 《自动化学报》 EI CSCD 北大核心 2019年第2期398-406,共9页
针对湿式球磨机多工况运行过程中标签样本难以获取和工况改变导致的原测量模型失准问题,本文引入域适应随机权神经网络(Domain adaptive random weight neural network, DARWNN),实现待测工况中少量标签样本与原工况样本共同进行迁移学... 针对湿式球磨机多工况运行过程中标签样本难以获取和工况改变导致的原测量模型失准问题,本文引入域适应随机权神经网络(Domain adaptive random weight neural network, DARWNN),实现待测工况中少量标签样本与原工况样本共同进行迁移学习.DARWNN网络解决了不同工况间难以共同进行机器学习的问题,但其只考虑经验风险,而未考虑结构风险,从而泛化性能较差,预测精度较低.在此基础上,本文引入流形正则化,并构建基于流形正则化的域适应随机权神经网络(Domain adaptive manifold regularization random weight, neural network, DAMR.RWNN),以保持数据几何结构,提高相应模型性能.实验结果表明,所提方法可以有效提高DARWNN的学习精度,解决多工况情况下湿式球磨机负荷参数软测量问题. 展开更多
关键词 迁移学习 域适应 磨机负荷 流形正则化 软测量
下载PDF
基于流形正则化域适应湿式球磨机负荷参数软测量 被引量:15
6
作者 杜永贵 李思思 +1 位作者 阎高伟 程兰 《化工学报》 EI CAS CSCD 北大核心 2018年第3期1244-1251,共8页
针对多工况条件下球磨机关键负荷参数测量面临的复杂性问题,提出基于流形正则化域适应(domain adaptation with manifold regularization,DAMR)湿式球磨机负荷参数软测量的方法。该方法首先采用集成流形约束、最大方差及最大均值差异寻... 针对多工况条件下球磨机关键负荷参数测量面临的复杂性问题,提出基于流形正则化域适应(domain adaptation with manifold regularization,DAMR)湿式球磨机负荷参数软测量的方法。该方法首先采用集成流形约束、最大方差及最大均值差异寻找特征变换矩阵,然后,将源建模领域和未建模领域的特征信息投射到公共子空间,最后,在子空间建立模型得到球磨机关键负荷参数的预测值。实验结果表明该方法能以较高的精度实现未知工况下湿式球磨机关键负荷参数的预测,且该方法对于流程工业多工况软测量和过程监控研究有一定的参考价值。 展开更多
关键词 迁移学习 流形正则化 最大均值差异 湿式球磨机负荷参数 集成 过程控制 预测
下载PDF
基于随机配置网络的轻量级人体行为识别模型 被引量:5
7
作者 南静 宁传峰 +1 位作者 建中华 代伟 《控制与决策》 EI CSCD 北大核心 2023年第6期1541-1550,共10页
针对智能手机受限的计算和存储环境等问题,提出基于流形正则化和QR分解的轻量级随机配置网络人体行为识别模型.首先,利用流形正则化解决输入数据被随机映射到SCNs隐含层空间后出现难以预测的非线性分布问题,以提升模型结构的轻量性;其次... 针对智能手机受限的计算和存储环境等问题,提出基于流形正则化和QR分解的轻量级随机配置网络人体行为识别模型.首先,利用流形正则化解决输入数据被随机映射到SCNs隐含层空间后出现难以预测的非线性分布问题,以提升模型结构的轻量性;其次,采用QR分解降低输出权值计算复杂度,进一步提高模型建模过程的轻量性;最后,在两个人体行为识别数据集上评估所提出模型在模型识别精度和轻量性方面的有效性.实验结果表明,与SCNs、CNN等相比,所提出模型对于人体行为识别问题不仅可以实现识别精度的提高,还能有效降低计算复杂度,提高模型结构的紧致性. 展开更多
关键词 人体行为识别 智能手机 随机配置网络 流形正则化 QR分解 轻量性
原文传递
拉普拉斯多层极速学习机 被引量:8
8
作者 丁世飞 张楠 史忠植 《软件学报》 EI CSCD 北大核心 2017年第10期2599-2610,共12页
极速学习机不仅仅是有效的分类器,还能应用到半监督学习中.但是,半监督极速学习机和拉普拉斯光滑孪生支持向量机一样,是一种浅层学习算法.深度学习实现了复杂函数的逼近并缓解了以前多层神经网络算法的局部最小性问题,目前在机器学习领... 极速学习机不仅仅是有效的分类器,还能应用到半监督学习中.但是,半监督极速学习机和拉普拉斯光滑孪生支持向量机一样,是一种浅层学习算法.深度学习实现了复杂函数的逼近并缓解了以前多层神经网络算法的局部最小性问题,目前在机器学习领域中引起了广泛的关注.多层极速学习机(ML-ELM)是根据深度学习和极速学习机的思想提出的算法,通过堆叠极速学习机-自动编码器算法(ELM-AE)构建多层神经网络模型,不仅实现了复杂函数的逼近,并且训练过程中无需迭代,学习效率高.把流形正则化框架引入ML-ELM中,提出拉普拉斯多层极速学习机算法(Lap-ML-ELM).然而,ELM-AE不能很好地解决过拟合问题.针对这一问题,把权值不确定引入ELM-AE中,提出权值不确定极速学习机-自动编码器算法(WU-ELM-AE),可学习到更为鲁棒的特征.最后,在前面两种算法的基础上提出权值不确定拉普拉斯多层极速学习机算法(WUL-ML-ELM),它堆叠WU-ELM-AE构建深度模型,并用流形正则化框架求取输出权值.该算法在分类精度上有明显提高并且不需花费太多的时间.实验结果表明,Lap-ML-ELM与WUL-ML-ELM都是有效的半监督学习算法. 展开更多
关键词 极速学习机 半监督学习 多层极速学习机 流形正则化 权值不确定
下载PDF
基于时间迁移模型的旋转机械实时故障诊断 被引量:7
9
作者 沈飞 陈超 +1 位作者 徐佳文 严如强 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第10期84-94,共11页
提出一种时间迁移模型,以提升旋转机械工况发生变化时的实时故障诊断性能,其由历史数据构成源领域、当前数据构成目标领域。首先,根据变工况规则确定模型的数据领域,并提取其时域特征向量构成五维空间。其次,将源和目标领域通过最大方... 提出一种时间迁移模型,以提升旋转机械工况发生变化时的实时故障诊断性能,其由历史数据构成源领域、当前数据构成目标领域。首先,根据变工况规则确定模型的数据领域,并提取其时域特征向量构成五维空间。其次,将源和目标领域通过最大方差投影(MVP)和流形正则化投影(MRP)分别映射至二维子空间,并利用最小均值差异(MMD)准则缩短两者距离。最后,在投影空间中利用BP神经网络和支持向量机(SVM)分类器对源领域建立分类模型,并应用至目标领域,并通过筛选源领域样本以更新诊断模型。齿轮传动系统试验结果表明,时间迁移能够解决工况发生变化时的实时机械故障诊断问题,相比传统迁移成分分析(TCA)模型能提升诊断性能,故为其工程应用提供有价值的技术手段。 展开更多
关键词 实时故障诊断 时间迁移 最大方差投影 流形正则化投影 最小均值差异
下载PDF
基于区分性联合概率分布的域适应故障诊断 被引量:2
10
作者 周长巍 李国勇 +2 位作者 任密蜂 叶泽甫 阎高伟 《振动与冲击》 EI CSCD 北大核心 2023年第7期170-179,共10页
针对多工况条件下的故障诊断方法因建模数据和待测数据不满足独立同分布假设,导致模型性能恶化这一问题,提出了一种基于区分性联合概率分布差异的域适应故障诊断建模方法。以一个结构风险最小化域不变分类器作为故障诊断框架。在框架上... 针对多工况条件下的故障诊断方法因建模数据和待测数据不满足独立同分布假设,导致模型性能恶化这一问题,提出了一种基于区分性联合概率分布差异的域适应故障诊断建模方法。以一个结构风险最小化域不变分类器作为故障诊断框架。在框架上施加基于区分性联合概率分布差异的域适应项,将建模数据和待测数据投影到公共特征空间中,对齐跨域同类别样本分布的同时,最大化跨域不同类别样本间分布差异;并且利用流形正则化保持数据的局部几何结构。在多工况条件下的凯斯西储大学(CWRU)和帕德伯恩大学(PU)轴承故障诊断数据集上进行试验。试验结果表明,该方法能有效提高故障诊断模型预测精度和泛化性,在多工况故障诊断任务中的表现良好。 展开更多
关键词 故障诊断 多工况 迁移学习 区分性域适应 流形正则化
下载PDF
基于伪标签回归和流形正则化的无监督特征选择算法 被引量:2
11
作者 宋雨 肖玉柱 宋学力 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期263-272,共10页
无监督特征选择是无标签高维数据预处理过程中一种有效的数据降维技术,然而大多数无监督特征选择算法忽略了数据样本本身的类簇结构特性,选择具有低判别性信息的特征.基于此,提出一种基于伪标签回归和流形正则化的无监督特征选择算法.... 无监督特征选择是无标签高维数据预处理过程中一种有效的数据降维技术,然而大多数无监督特征选择算法忽略了数据样本本身的类簇结构特性,选择具有低判别性信息的特征.基于此,提出一种基于伪标签回归和流形正则化的无监督特征选择算法.具体地,联合伪标签回归和最大化类间散度来保证算法在迭代过程中学习伪标签,同时,自适应学习数据样本之间的局部几何结构,获得更加精准的标签信息和结构信息,进而选择具有高判别性且能保持数据流形结构的特征.在四个公开数据集上的对比实验表明,提出算法的特征选择结果优于现有的一些无监督特征选择算法. 展开更多
关键词 无监督特征选择算法 判别信息 伪标签回归 最大化类间散度 流形正则化
下载PDF
融合空谱特征的MR-KRVFL高光谱地物识别模型研究
12
作者 郭国璐 范玉刚 冯晓苏 《化工自动化及仪表》 CAS 2024年第2期284-293,共10页
针对高光谱图像复杂空谱特性影响地物识别模型分类精度的问题,提出一种融合空谱特征的流形正则化核随机向量函数连接网络(MR-KRVFL)高光谱图像地物识别方法。首先,对高光谱图像进行熵率超像素分割(ERS),获取对应的同质区域;其次,利用主... 针对高光谱图像复杂空谱特性影响地物识别模型分类精度的问题,提出一种融合空谱特征的流形正则化核随机向量函数连接网络(MR-KRVFL)高光谱图像地物识别方法。首先,对高光谱图像进行熵率超像素分割(ERS),获取对应的同质区域;其次,利用主元分析(PCA)对同质区域进行降维并提取其空谱联合特征;最后,基于空谱特征信息,构造核随机向量函数连接网络(KRVFL)地物识别模型,并对模型进行流形正则化约束,提高高光谱图像地物识别模型的泛化性能。将该模型应用于Indian Pines和Pavia University高光谱数据集,分类精度达到了96.84%和98.83%,证明所提模型的有效性。 展开更多
关键词 熵率超像素分割 高光谱图像 核函数 流形正则化 分类精度 地物识别
下载PDF
基于流形正则化的在线半监督极限学习机 被引量:6
13
作者 王萍 王迪 冯伟 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第8期1153-1158,1167,共7页
在基于流形正则化的半监督极限学习机(SS-ELM)的基础上,利用分块矩阵的运算法则,提出了在线半监督极限学习机(OSS-ELM)方法.为避免在实时学习的过程中由于数据累积引起的内存不足,通过对SS-ELM的目标函数的流形正则项的近似,给出了OSS-... 在基于流形正则化的半监督极限学习机(SS-ELM)的基础上,利用分块矩阵的运算法则,提出了在线半监督极限学习机(OSS-ELM)方法.为避免在实时学习的过程中由于数据累积引起的内存不足,通过对SS-ELM的目标函数的流形正则项的近似,给出了OSS-ELM的近似算法OSSELM(buffer).在Abalone数据集上的实验显示,OSS-ELM(buffer)在线学习的累计时间与所处理的样本个数呈线性关系,同时,9个公共数据集上的实验表明,OSS-ELM(buffer)的泛化能力与SS-ELM的泛化能力的相对偏差在1%以下.这些实验结果说明,OSS-ELM(buffer)不仅解决了内存问题,还在基本保持SS-ELM泛化能力的基础上大幅度提高了在线学习速度,可以有效应用于在线半监督学习当中. 展开更多
关键词 极限学习机 半监督学习 在线学习 流形正则化
下载PDF
利用正则化矩阵分解技术的多视图聚类方法 被引量:6
14
作者 徐霜 余琍 《计算机工程与应用》 CSCD 北大核心 2019年第14期142-147,161,共7页
为了解决具有多种特征属性的多媒体数据(多视图数据)挖掘问题,在非负矩阵分解(NMF)算法的基础上,提出了一种多视图正则化矩阵分解算法(MRMF),该算法使用了多元非负矩阵分解技术,同时使用 L2,1 范数描述矩阵分解的损失函数,并采用多视图... 为了解决具有多种特征属性的多媒体数据(多视图数据)挖掘问题,在非负矩阵分解(NMF)算法的基础上,提出了一种多视图正则化矩阵分解算法(MRMF),该算法使用了多元非负矩阵分解技术,同时使用 L2,1 范数描述矩阵分解的损失函数,并采用多视图流形正则化对矩阵分解进行正则化约束。与现有的一些数据聚类或多视图聚类算法相比,提出的MRMF算法不易受到原始数据中噪声的影响,而且能够充分考虑到不同视图在聚类中所具有不同权重的问题,能够对多视图数据进行较为准确的聚类。MRMF算法的有效性在一些经典的公开数据集上进行了验证,并取得了较好的聚类精度。 展开更多
关键词 非负矩阵分解 多视图学习 数据聚类 流形正则化
下载PDF
多特征融合的半监督流形约束定位方法
15
作者 钱政 严亮 孙顺远 《吉林大学学报(理学版)》 CAS 北大核心 2024年第5期1219-1227,共9页
针对无线保真(WiFi)和低功耗蓝牙(BLE)指纹定位方法需要大量标记训练样本以及单模定位精度和稳定性难以满足大规模定位场景需求的问题,提出一种融合WiFi和BLE信号的半监督流形约束定位方法.实验结果表明:该方法与单一特征相比,每一维度... 针对无线保真(WiFi)和低功耗蓝牙(BLE)指纹定位方法需要大量标记训练样本以及单模定位精度和稳定性难以满足大规模定位场景需求的问题,提出一种融合WiFi和BLE信号的半监督流形约束定位方法.实验结果表明:该方法与单一特征相比,每一维度归一化方差稳定在0.08以下,定位精度约提高25个百分点;使用分别构建流形约束的半监督学习方法时,能使定位过程中所需标记样本数量减少约90%.因此,该方法能极大减少需标记的样本数量,并有效提高定位的稳定性和精度. 展开更多
关键词 多特征融合 半监督学习 流形正则化 无线保真(WiFi) 低功耗蓝牙
下载PDF
局部超图拉普拉斯约束的高光谱影像低秩表示去噪方法 被引量:6
16
作者 薛志祥 余旭初 +1 位作者 谭熊 付琼莹 《光学学报》 EI CAS CSCD 北大核心 2017年第5期77-85,共9页
针对传统高光谱影像低秩表示去噪方法无法保持影像多元几何结构信息的问题,提出一种基于局部超图拉普拉斯约束的高光谱影像低秩表示去噪方法。在低秩表示模型中增加超图拉普拉斯正则项,保持数据间多元几何流形结构;并对低秩模型系数矩... 针对传统高光谱影像低秩表示去噪方法无法保持影像多元几何结构信息的问题,提出一种基于局部超图拉普拉斯约束的高光谱影像低秩表示去噪方法。在低秩表示模型中增加超图拉普拉斯正则项,保持数据间多元几何流形结构;并对低秩模型系数矩阵增加稀疏和非负约束条件,进一步提高模型对影像局部信息的保持能力,使得模型不仅能够恢复具有低秩性质的影像信号分量,而且可以很好地保持影像的多元几何流形结构。在AVIRIS影像和ProSpecTIR-VS影像上的对比实验表明,所提方法更好地保持了影像的空间和光谱信息,有效地改善了高光谱影像去噪效果。 展开更多
关键词 图像处理 影像去噪 超图拉普拉斯 高光谱影像 流形正则项 低秩表示模型
原文传递
基于流形正则化极限学习机的文本分类算法研究 被引量:5
17
作者 庞皓明 冀俊忠 +1 位作者 刘金铎 姚垚 《计算机工程》 CAS CSCD 北大核心 2019年第6期242-248,共7页
基于极限学习机的文本分类方法在对输入的文本特征进行随机映射时,会呈现一种非线性的几何结构,利用最小二乘法无法对其进行求解,影响文本的分类性能。为此,引入一种新的流形正则化思想,提出基于极限学习机的改进算法。利用拉普拉斯特... 基于极限学习机的文本分类方法在对输入的文本特征进行随机映射时,会呈现一种非线性的几何结构,利用最小二乘法无法对其进行求解,影响文本的分类性能。为此,引入一种新的流形正则化思想,提出基于极限学习机的改进算法。利用拉普拉斯特征映射保持输入文本特征的几何结构。基于样本的类别信息对样本点之间的距离进行修正,优先选择类别相同的样本点,以改善分类性能。在Reuters和20newsgroup数据集上的实验结果表明,与正则化极限学习机算法、AdaBELM算法等相比,该算法分类性能较好,F1-measure值可达91.42%。 展开更多
关键词 文本分类 监督学习 正则化极限学习机 流形正则化 特征映射
下载PDF
基于流形正则化框架和MMD的域自适应BLS模型
18
作者 赵慧敏 郑建杰 +1 位作者 郭晨 邓武 《自动化学报》 EI CAS CSCD 北大核心 2024年第7期1458-1471,共14页
宽度学习系统(Broad learning system,BLS)作为一种基于随机向量函数型网络(Random vector functionallink network,RVFLN)的高效增量学习系统,具有快速自适应模型结构选择能力和高精度的特点.但针对目标分类任务中有标签数据匮乏问题,... 宽度学习系统(Broad learning system,BLS)作为一种基于随机向量函数型网络(Random vector functionallink network,RVFLN)的高效增量学习系统,具有快速自适应模型结构选择能力和高精度的特点.但针对目标分类任务中有标签数据匮乏问题,传统的BLS难以借助相关领域知识来提升目标域的分类效果,为此提出一种基于流形正则化框架和最大均值差异(Maximum mean discrepancy,MMD)的域适应BLS(Domain adaptive BLS,DABLS)模型,实现目标域无标签条件下的跨域图像分类.DABLS模型首先构造BLS的特征节点和增强节点,从源域和目标域数据中有效提取特征;再利用流形正则化框架构造拉普拉斯矩阵,以探索目标域数据中的流形特性,挖掘目标域数据的潜在信息.然后基于迁移学习方法构建源域数据与目标域数据之间的MMD惩罚项,以匹配源域和目标域之间的投影均值;将特征节点、增强节点、MMD惩罚项和拉普拉斯矩阵相结合,构造目标函数,并采用岭回归分析法对其求解,获得输出系数,从而提高模型的跨域分类性能.最后在不同图像数据集上进行大量的验证与对比实验,结果表明DABLS在不同图像数据集上均能获得较好的跨域分类性能,具有较强的泛化能力和较好的稳定性. 展开更多
关键词 宽度学习系统 流形正则化框架 最大均值差异 域自适应 图像分类
下载PDF
基于流形正则的堆叠胶囊自编码器优化算法 被引量:1
19
作者 王鲁娜 杜洪波 朱立军 《广西师范大学学报(自然科学版)》 CAS 北大核心 2023年第2期76-85,共10页
针对堆叠胶囊自编码器存在检测性能慢、不能更好挖掘图像局部特征的问题,本文提出基于流形正则的堆叠胶囊自编码器优化算法。采用Scharr滤波器对堆叠胶囊自编码器模型中的图像进行重建,加强图像目标检测的精度,并在损失函数中引入流形... 针对堆叠胶囊自编码器存在检测性能慢、不能更好挖掘图像局部特征的问题,本文提出基于流形正则的堆叠胶囊自编码器优化算法。采用Scharr滤波器对堆叠胶囊自编码器模型中的图像进行重建,加强图像目标检测的精度,并在损失函数中引入流形正则项,从而加强对原始数据空间局部特征的提取,最终使用基于流形正则的堆叠胶囊自编码器学习参数,选择出更加具有区别性的特征。在MNIST和Fashion MNIST数据集上的实验结果显示,该优化算法相比于原网络结构,图像分类准确率分别提高了0.26和9.23个百分点,且模型训练速度也得到较大提高。 展开更多
关键词 深度学习 图像分类 堆叠胶囊自编码器 流形正则 滤波器
下载PDF
流形正则化多核模型的模糊红外目标提取 被引量:5
20
作者 杨焘 付冬梅 《工程科学学报》 EI CSCD 北大核心 2016年第6期876-885,共10页
针对模糊边缘的红外目标提取问题,提出一种基于流形正则化多核半监督分类的提取方法.首先应用最大类间方差法计算初始分割阈值,获得确定化的目标和背景区域以及待确定化的模糊边缘区域;然后建立各区域内像素点邻域空间集,并通过多核函... 针对模糊边缘的红外目标提取问题,提出一种基于流形正则化多核半监督分类的提取方法.首先应用最大类间方差法计算初始分割阈值,获得确定化的目标和背景区域以及待确定化的模糊边缘区域;然后建立各区域内像素点邻域空间集,并通过多核函数特征映射获得邻域空间中灰度均值和方差信息特征值,通过流形正则获得邻域空间中位置信息特征值;在特征值基础上,建立半监督分类模型对模糊边缘区域像素点邻域空间集进行类别划分;最后计算最佳分割阈值.对比实验结果表明,该方法提取模糊边缘红外目标效果好且运算效率高. 展开更多
关键词 模糊边缘 目标提取 核函数 流形正则化
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部