探讨了铁碳微电解-Fenton耦合+磁粉类Fenton工艺对有机磷农药废水的处理效果。结果表明,在p H为1、双氧水(H_2O_2质量分数30%)投加量为4 m L/L、曝气1.5 h条件下,Fe/C-H_2O_2对废水中TP的去除率达到58.84%;处理后的出水再进行磁粉/H_2O_...探讨了铁碳微电解-Fenton耦合+磁粉类Fenton工艺对有机磷农药废水的处理效果。结果表明,在p H为1、双氧水(H_2O_2质量分数30%)投加量为4 m L/L、曝气1.5 h条件下,Fe/C-H_2O_2对废水中TP的去除率达到58.84%;处理后的出水再进行磁粉/H_2O_2类Fenton处理,在双氧水(H_2O_2质量分数30%)投加量为7.5 m L/L、磁粉投加量为7.5g/L、45℃下曝气2 h的实验条件下,废水中TP的去除率为67.59%。最终出水COD为425 mg/L,TP的质量浓度18.96 mg/L,达到预处理指标。展开更多
A technique comprising coal-based direct reduction followed by magnetic separation was presented to recover iron and copper from copper slag flotation tailings.Optimal process parameters,such as reductant and additive...A technique comprising coal-based direct reduction followed by magnetic separation was presented to recover iron and copper from copper slag flotation tailings.Optimal process parameters,such as reductant and additive ratios,reduction temperature,and reduction time,were experimentally determined and found to be as follows:a limestone ratio of 25%,a bitumite ratio of 30%,and reduction roasting at 1473 Kfor 90 min.Under these conditions,copper-bearing iron powders(CIP)with an iron content of 90.11% and copper content of 0.86%,indicating iron and copper recoveries of87.25% and 83.44%respectively,were effectively obtained.Scanning electron microscopy and energy dispersive spectroscopy of the CIP revealed that some tiny copper particles were embedded in metal iron and some copper formed alloy with iron,which was difficult to achieve the separation of these two metals.Thus,the copper went into magnetic products by magnetic separation.Adding copper into the steel can produce weathering steel.Therefore,the CIP can be used as an inexpensive raw material for weathering steel.展开更多
文摘探讨了铁碳微电解-Fenton耦合+磁粉类Fenton工艺对有机磷农药废水的处理效果。结果表明,在p H为1、双氧水(H_2O_2质量分数30%)投加量为4 m L/L、曝气1.5 h条件下,Fe/C-H_2O_2对废水中TP的去除率达到58.84%;处理后的出水再进行磁粉/H_2O_2类Fenton处理,在双氧水(H_2O_2质量分数30%)投加量为7.5 m L/L、磁粉投加量为7.5g/L、45℃下曝气2 h的实验条件下,废水中TP的去除率为67.59%。最终出水COD为425 mg/L,TP的质量浓度18.96 mg/L,达到预处理指标。
基金the Natural Science Foundation of China(No.51304012)the State Key Laboratory of High-Efficient Mining and Safety of Metal Mines for the financial support for this research
文摘A technique comprising coal-based direct reduction followed by magnetic separation was presented to recover iron and copper from copper slag flotation tailings.Optimal process parameters,such as reductant and additive ratios,reduction temperature,and reduction time,were experimentally determined and found to be as follows:a limestone ratio of 25%,a bitumite ratio of 30%,and reduction roasting at 1473 Kfor 90 min.Under these conditions,copper-bearing iron powders(CIP)with an iron content of 90.11% and copper content of 0.86%,indicating iron and copper recoveries of87.25% and 83.44%respectively,were effectively obtained.Scanning electron microscopy and energy dispersive spectroscopy of the CIP revealed that some tiny copper particles were embedded in metal iron and some copper formed alloy with iron,which was difficult to achieve the separation of these two metals.Thus,the copper went into magnetic products by magnetic separation.Adding copper into the steel can produce weathering steel.Therefore,the CIP can be used as an inexpensive raw material for weathering steel.