The purpose of this work relates to study on the characteristics of ultra thin gate oxide (2 5nm thickness) and the effect of metal Al,Zr,and Ta contamination on GOI.The controlled metallic contamination experiments...The purpose of this work relates to study on the characteristics of ultra thin gate oxide (2 5nm thickness) and the effect of metal Al,Zr,and Ta contamination on GOI.The controlled metallic contamination experiments are carried out by depositing a few ppm contaminated metal and low pH solutions on the wafers.The maximum metal surface concentration is controlled at about 10 12 cm -2 level in order to simulate metal contamination during ultra clean processing.A ramped current stress for intrinsic charge to breakdown measurements with gate injection mode is used to examine the characteristics of these ultra thin gate oxides and the effect of metal contamination on GOI.It is the first time to investigate the influence of metal Zr and Ta contamination on 2 5nm ultra thin gate oxide.It is demonstrated that there is little effect of Al contamination on GOI,while Zr contamination is the most detrimental to GOI,and early breakdown has happened to wafers contaminated by Ta.展开更多
In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 ...In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 V due to the formation of Er oxide. Moreover, it is observed that the equivalent oxide thickness is thinned down by 0.5 nm because the thickness of interfacial layer is significantly reduced, which is thought to be attributed to the strong binding capability of the implanted Er atoms with oxygen atoms. In addition, cross-sectional transmission electron microscopy experiment shows that the HfO2 layer with Er ion implantation is still amorphous after annealing at a high temperature. This Er ion implantation technique has the potential to be implemented as a band edge metal gate solution for NMOS without a capping layer, and may also satisfy the demand of the EOT reduction in 32 nm technology node.展开更多
文摘The purpose of this work relates to study on the characteristics of ultra thin gate oxide (2 5nm thickness) and the effect of metal Al,Zr,and Ta contamination on GOI.The controlled metallic contamination experiments are carried out by depositing a few ppm contaminated metal and low pH solutions on the wafers.The maximum metal surface concentration is controlled at about 10 12 cm -2 level in order to simulate metal contamination during ultra clean processing.A ramped current stress for intrinsic charge to breakdown measurements with gate injection mode is used to examine the characteristics of these ultra thin gate oxides and the effect of metal contamination on GOI.It is the first time to investigate the influence of metal Zr and Ta contamination on 2 5nm ultra thin gate oxide.It is demonstrated that there is little effect of Al contamination on GOI,while Zr contamination is the most detrimental to GOI,and early breakdown has happened to wafers contaminated by Ta.
基金supported by the State Key Development Program for Basic Research of China(Grant No. 2011CBA00602)the National Natural Science Foundation of China(Grant Nos. 60876076 and 60976013)
文摘In this paper, we report the fabrication, electrical and physical characteristics of TiN/HfO2/Si MOS capacitors with erbium (Er) ion implantation. It is demonstrated that the fiat band voltage can be reduced by 0.4 V due to the formation of Er oxide. Moreover, it is observed that the equivalent oxide thickness is thinned down by 0.5 nm because the thickness of interfacial layer is significantly reduced, which is thought to be attributed to the strong binding capability of the implanted Er atoms with oxygen atoms. In addition, cross-sectional transmission electron microscopy experiment shows that the HfO2 layer with Er ion implantation is still amorphous after annealing at a high temperature. This Er ion implantation technique has the potential to be implemented as a band edge metal gate solution for NMOS without a capping layer, and may also satisfy the demand of the EOT reduction in 32 nm technology node.