A gravity network with 302 observation points has been established in the western Sichuan Foreland Basin(SFB) to explore Bouguer gravity anomalies(BGAs). Our observational results reveal that the BGAs are negative as ...A gravity network with 302 observation points has been established in the western Sichuan Foreland Basin(SFB) to explore Bouguer gravity anomalies(BGAs). Our observational results reveal that the BGAs are negative as a whole, with a maximum value of-220 m Gal(10-5m s-2)at the northwest region of the study area. The real Moho depths beneath the SFB revealed by BGA data change smoothly from 39.5 km in the southeast to 43.7 km in the northwest of the monitoring region. However, the isostatic ones deduced from Airy isostatic model and topographical data vary approximately 39.5–42.0 km. The maximum differences of 2.7 km between the real and isostatic Moho depths are found near the seismic gap between the M8.0Wenchuan and M7.0 Lushan earthquakes, where the crust is in the greatest isostatic imbalance of the monitoring region. Analysis of the isostatic state indicates that the deep dynamic environment near the seismic gap between these two earthquakes indicates an M C 7.0 earthquake in the future. This study indicates that we can use isostasy as a potential approach to study the dynamic process of crustalmaterial movement and to analyze regional potential seismic risks.展开更多
Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, ...Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.展开更多
基金supported by Basic Research Projects of Institute of Earthquake Science,China Earthquake Administration(CEA)(2013IES01013 and 2011IES010103)the East-Asia Earthquake Project(ZRH2013-01)+1 种基金the National Natural Science Foundation of China(41331066)the Open Fund of StateKey Laboratory of Geodesy and Earth’s Dynamics(SKLGED2014-43-E)
文摘A gravity network with 302 observation points has been established in the western Sichuan Foreland Basin(SFB) to explore Bouguer gravity anomalies(BGAs). Our observational results reveal that the BGAs are negative as a whole, with a maximum value of-220 m Gal(10-5m s-2)at the northwest region of the study area. The real Moho depths beneath the SFB revealed by BGA data change smoothly from 39.5 km in the southeast to 43.7 km in the northwest of the monitoring region. However, the isostatic ones deduced from Airy isostatic model and topographical data vary approximately 39.5–42.0 km. The maximum differences of 2.7 km between the real and isostatic Moho depths are found near the seismic gap between the M8.0Wenchuan and M7.0 Lushan earthquakes, where the crust is in the greatest isostatic imbalance of the monitoring region. Analysis of the isostatic state indicates that the deep dynamic environment near the seismic gap between these two earthquakes indicates an M C 7.0 earthquake in the future. This study indicates that we can use isostasy as a potential approach to study the dynamic process of crustalmaterial movement and to analyze regional potential seismic risks.
基金supported by the National Natural Science Foundation of China(41204058)the Running Foundation of the Gravity Network Center of China(201301008)
文摘Because only a small near-field coseismie gravity change signal remains after removal of noise from the accuracy of observations and the time and spatial resolution of the earth's surface gravity observation system, it is difficult to verify simulations of dislocation theory. In this study, it is shown that the GS15 gravimeter, located 99.5 km from the epicenter of the Ms7.0 Lushan earthquake on April 20, 2013 at 08 : 04 UTC + 8, showed the influence of the earthquake from 2013-04-16 to 2013-04-26 after a time calibration, tide correc- tions, drift correction, period correction and relaxation correction were applied to its data. The post-seismic relaxation process of the spring in the gravimeter took approximately 430 minutes and showed a 2. 5 ×10^-8 ms^-2 gravity change. After correcting for the relaxation process, it is shown that a coseismic gravity change of approximately +0.59 +-0. 4 ~ 10-Sms-2 was observed by the GS15 gravimeter; this agrees with the simulated gravity change of approximately 0.31 ~ 10 -8 ms-2. The rate of the coseismie gravity change and the coseismic vertical displacement, as measured by one-second and one-day sampling interval GPS units, is also consistent with the theoretical rate of change. Therefore, the GS15 gravimeter at the Pixian Station observed a coseismic gravity change after the Ms7.0 Lushan earthquake. This and similar measurements could be applied to test and confirm the theory used for these simulations.