Huperzine A(Hup-A) is a poorly water-soluble drug with low oral bioavailability. A selfmicroemulsifying drug delivery system(SMEDDS) was used to enhance the oral bioavailability and lymphatic uptake and transport of H...Huperzine A(Hup-A) is a poorly water-soluble drug with low oral bioavailability. A selfmicroemulsifying drug delivery system(SMEDDS) was used to enhance the oral bioavailability and lymphatic uptake and transport of Hup-A. A single-pass intestinal perfusion(SPIP) technique and a chylomicron flow-blocking approach were used to study its intestinal absorption, mesenteric lymph node distribution and intestinal lymphatic uptake. The value of the area under the plasma concentration–time curve(AUC) of Hup-A SMEDDS was significantly higher than that of a Hup-A suspension(P <0.01).The absorption rate constant(K_a) and the apparent permeability coefficient(P_(app)) for Hup-A in different parts of the intestine suggested a passive transport mechanism, and the values of K_a and P_(app) of Hup-A SMEDDS in the ileum were much higher than those in other intestinal segments. The determination of Hup-A concentration in mesenteric lymph nodes can be used to explain the intestinal lymphatic absorption of Hup-A SMEDDS. For Hup-A SMEDDS, the values of AUC and maximum plasma concentration(C_(max)) of the blocking model were significantly lower than those of the control model(P<0.05). The proportion of lymphatic transport of Hup-A SMEDDS and Hup-A suspension were about 40% and 5%,respectively, suggesting that SMEDDS can significantly improve the intestinal lymphatic uptake and transport of Hup-A.展开更多
The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of ...The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (e.g., ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments. Fine-tuning the activation kinetics of these prodrugs is a promising prospect for more efficient on-target cancer therapies. In this study, disulfide, steric disulfide, and ester bonds were used to bridge cabazitaxel (CTX) to an intestinal lymph vessel-directed triglyceride (TG) module. Then, synthetic prodrugs were efficiently incorporated into self-nanoemulsifying drug delivery system (corn oil and Maisine CC were used as the oil phase and Cremophor EL as the surfactant). All three prodrugs had excellent gastric stability and intestinal permeability. The oral bioavailability of the disulfide bond-based prodrugs (CTX-(C)S-(C)S-TG and CTX-S-S-TG) was 11.5- and 19.1-fold higher than that of the CTX solution, respectively, demonstrating good oral delivery efficiency. However, the excessive reduction sensitivity of the disulfide bond resulted in lower plasma stability and safety of CTX-S-S-TG than that of CTX-(C)S-(C)S-TG. Moreover, introducing steric hindrance into disulfide bonds could also modulate drug release and cytotoxicity, significantly improving the anti-tumor activity even compared to that of intravenous CTX solution at half dosage while minimizing off-target adverse effects. Our findings provide insights into the design and fine-tuning of different disulfide bond-based linkers, which may help identify oral prodrugs with more potent therapeutic efficacy and safety for cancer therapy.展开更多
Targeted drug delivery is constantly updated with a better understanding of the physiological and pathological features of various diseases. Depending on high safety, good compliance and many other undeniable advantag...Targeted drug delivery is constantly updated with a better understanding of the physiological and pathological features of various diseases. Depending on high safety, good compliance and many other undeniable advantages, attempts have been undertaken to complete an intravenous-to-oral conversion of targeted drug delivery. However, oral delivery of particulates to systemic circulation is highly challenging due to the biochemical aggressivity and immune exclusion in the gut that restrain absorption and access to the bloodstream. Little is known about the feasibility of targeted drug delivery via oral administration(oral targeting) to a remote site beyond the gastrointestinal tract. To this end, this review proactively contributes to a special dissection on the feasibility of oral targeting. We discussed the theoretical basis of oral targeting, the biological barriers of absorption, the in vivo fate and transport mechanisms of drug vehicles, and the effect of structural evolution of vehicles on oral targeting as well. At last, a feasibility analysis on oral targeting was performed based on the integration of currently available information. The innate defense of intestinal epithelium does not allow influx of more particulates into the peripheral blood through enterocytes. Therefore, limited evidence and lacking exact quantification of systemically exposed particles fail to support much success with oral targeting. Nevertheless, the lymphatic pathway may serve as a potentially alternative portal of peroral particles into the remote target sites via M-cell uptake.展开更多
Orally administered drug entities have to survive the harsh gastrointestinal environment,penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation.Whereas the gastroint...Orally administered drug entities have to survive the harsh gastrointestinal environment,penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation.Whereas the gastrointestinal stability can be well maintained by taking proper measures,hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism.The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway.Intestinal lymphatic transport is emerging as a promising pathway to this end.In this review,we intend to provide an updated overview on the rationale,strategies,factors and applications involved in intestinal lymphatic transport.There are mainly two pathways for peroral lymphatic transportdthe chylomicron and the microfold cell pathways.The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.展开更多
目的探索葛根素自微乳给药系统(self-microemulsifying drug delivery systems of puerarin,PUE-SMEDDS)对PUE经肠淋巴转运及其口服生物利用度的影响。方法构建SD大鼠肠系膜淋巴转运模型,口服给药后同步收集淋巴液和血样,HPLC色谱法测定...目的探索葛根素自微乳给药系统(self-microemulsifying drug delivery systems of puerarin,PUE-SMEDDS)对PUE经肠淋巴转运及其口服生物利用度的影响。方法构建SD大鼠肠系膜淋巴转运模型,口服给药后同步收集淋巴液和血样,HPLC色谱法测定PUE在淋巴液和血浆中的含量,用梯形面积法计算AUC。结果葛根素混悬液(PUE-Suspension)的淋巴转运相对较低,Cmax仅为0.39μg·m L-1,而PUE-SMEDDS的Cmax为5.77μg·m L-1,显著提高PUE肠淋巴转运(P<0.001)。PUE-Suspension在淋巴液和血浆中的AUC0-12 h分别为158.1,438.1 min·μg·m L-1,淋巴转运量占体内吸收总量的36.09%;而PUE-SMEDDS在淋巴液和血浆中的AUC0-12 h分别为1953.3,1641.3 min·μg·m L-1,淋巴转运量占体内吸收总量的54.34%,PUE-SMEDDS的相对生物利用度(Fr)为603.0%。结论 SMEDDS能同时促进PUE经淋巴转运和血液吸收,显著提高PUE的口服生物利用度,而且PUE的淋巴转运量大于血液循环。展开更多
Heparins show great anticoagulant effect with few side effects,and are administered by subcutaneous or intravenous route in clinics.To improve patient compliance,oral administration is an alternative route.Nonetheless...Heparins show great anticoagulant effect with few side effects,and are administered by subcutaneous or intravenous route in clinics.To improve patient compliance,oral administration is an alternative route.Nonetheless,oral administration of heparins still faces enormous challenges due to the multiple obstacles.This review briefly analyzes a series of barriers ranging from poorly physicochemical properties of heparins,to harsh biological barriers including gastrointestinal degradation and pre-systemic metabolism.Moreover,several approaches have been developed to overcome these obstacles,such as improving stability of heparins in the gastrointestinal tract,enhancing the intestinal epithelia permeability and facilitating lymphatic delivery of heparins.Overall,this review aims to provide insights concerning advanced delivery strategies facilitating oral absorption of heparins.展开更多
目的探索卤泛群自微乳给药系统(halofantrine self-microemulsifying drug delivery system,HF-SMEDDS)通过改善淋巴转运增加HF口服生物利用度的可能性。方法以亚油酸乙酯为油相,吐温80为乳化剂,无水乙醇为助乳化剂,制备并筛选HF-SMEDD...目的探索卤泛群自微乳给药系统(halofantrine self-microemulsifying drug delivery system,HF-SMEDDS)通过改善淋巴转运增加HF口服生物利用度的可能性。方法以亚油酸乙酯为油相,吐温80为乳化剂,无水乙醇为助乳化剂,制备并筛选HF-SMEDDS处方,以油相和混合乳化剂(吐温80和无水乙醇)的比例及乳化剂与助乳化剂的比例为考察因素,以静脉给药组为对照,以二插管大鼠为动物模型,考察不同HF-SMEDDS处方口服给药后在大鼠体内的生物利用度。结果9组处方HF-SMEDDS粒径分布在20.6~336.5 nm,经淋巴转运药量可达到总给药量的2.25%~19.6%。结论HF-SMEDDS能有效提高药物的生物利用度,为HF口服制剂开发提供一定研究思路与基础。展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.8127410081573615)+2 种基金Natural Science Foundation of Anhui Province of China(Grant No.1408085QH189)Key Project for the Excellent Higher Education of Anhui Province of China(Grant No.2013SQRL019ZD)Research Project for the Science and Technology of Bozhou city of China(Grant No.BK2015005)
文摘Huperzine A(Hup-A) is a poorly water-soluble drug with low oral bioavailability. A selfmicroemulsifying drug delivery system(SMEDDS) was used to enhance the oral bioavailability and lymphatic uptake and transport of Hup-A. A single-pass intestinal perfusion(SPIP) technique and a chylomicron flow-blocking approach were used to study its intestinal absorption, mesenteric lymph node distribution and intestinal lymphatic uptake. The value of the area under the plasma concentration–time curve(AUC) of Hup-A SMEDDS was significantly higher than that of a Hup-A suspension(P <0.01).The absorption rate constant(K_a) and the apparent permeability coefficient(P_(app)) for Hup-A in different parts of the intestine suggested a passive transport mechanism, and the values of K_a and P_(app) of Hup-A SMEDDS in the ileum were much higher than those in other intestinal segments. The determination of Hup-A concentration in mesenteric lymph nodes can be used to explain the intestinal lymphatic absorption of Hup-A SMEDDS. For Hup-A SMEDDS, the values of AUC and maximum plasma concentration(C_(max)) of the blocking model were significantly lower than those of the control model(P<0.05). The proportion of lymphatic transport of Hup-A SMEDDS and Hup-A suspension were about 40% and 5%,respectively, suggesting that SMEDDS can significantly improve the intestinal lymphatic uptake and transport of Hup-A.
基金supported by National Natural Science Foundation of China(No.82173766,82104109)Natural Science Foundation of Liaoning Province(2022-BS158)+1 种基金Liaoning Province Applied Basic Research Program(No.2022JH2/101300097)National Key R&D Program of China(No.2022YFE0111600).
文摘The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (e.g., ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments. Fine-tuning the activation kinetics of these prodrugs is a promising prospect for more efficient on-target cancer therapies. In this study, disulfide, steric disulfide, and ester bonds were used to bridge cabazitaxel (CTX) to an intestinal lymph vessel-directed triglyceride (TG) module. Then, synthetic prodrugs were efficiently incorporated into self-nanoemulsifying drug delivery system (corn oil and Maisine CC were used as the oil phase and Cremophor EL as the surfactant). All three prodrugs had excellent gastric stability and intestinal permeability. The oral bioavailability of the disulfide bond-based prodrugs (CTX-(C)S-(C)S-TG and CTX-S-S-TG) was 11.5- and 19.1-fold higher than that of the CTX solution, respectively, demonstrating good oral delivery efficiency. However, the excessive reduction sensitivity of the disulfide bond resulted in lower plasma stability and safety of CTX-S-S-TG than that of CTX-(C)S-(C)S-TG. Moreover, introducing steric hindrance into disulfide bonds could also modulate drug release and cytotoxicity, significantly improving the anti-tumor activity even compared to that of intravenous CTX solution at half dosage while minimizing off-target adverse effects. Our findings provide insights into the design and fine-tuning of different disulfide bond-based linkers, which may help identify oral prodrugs with more potent therapeutic efficacy and safety for cancer therapy.
基金financially supported by Basic and Applied Basic Research Project of Guangzhou Science and Technology Plan (202201010743, China)Shanghai Municipal Commission of Science and Technology (19XD1400300 and 21430760800, China)。
文摘Targeted drug delivery is constantly updated with a better understanding of the physiological and pathological features of various diseases. Depending on high safety, good compliance and many other undeniable advantages, attempts have been undertaken to complete an intravenous-to-oral conversion of targeted drug delivery. However, oral delivery of particulates to systemic circulation is highly challenging due to the biochemical aggressivity and immune exclusion in the gut that restrain absorption and access to the bloodstream. Little is known about the feasibility of targeted drug delivery via oral administration(oral targeting) to a remote site beyond the gastrointestinal tract. To this end, this review proactively contributes to a special dissection on the feasibility of oral targeting. We discussed the theoretical basis of oral targeting, the biological barriers of absorption, the in vivo fate and transport mechanisms of drug vehicles, and the effect of structural evolution of vehicles on oral targeting as well. At last, a feasibility analysis on oral targeting was performed based on the integration of currently available information. The innate defense of intestinal epithelium does not allow influx of more particulates into the peripheral blood through enterocytes. Therefore, limited evidence and lacking exact quantification of systemically exposed particles fail to support much success with oral targeting. Nevertheless, the lymphatic pathway may serve as a potentially alternative portal of peroral particles into the remote target sites via M-cell uptake.
基金supported by the National Natural Science Foundation of China(Nos.81872815,82030107,and 81690263)Science and Technology commission of Shanghai Municipality(No.19XD1400300,China)
文摘Orally administered drug entities have to survive the harsh gastrointestinal environment,penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation.Whereas the gastrointestinal stability can be well maintained by taking proper measures,hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism.The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway.Intestinal lymphatic transport is emerging as a promising pathway to this end.In this review,we intend to provide an updated overview on the rationale,strategies,factors and applications involved in intestinal lymphatic transport.There are mainly two pathways for peroral lymphatic transportdthe chylomicron and the microfold cell pathways.The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications.
文摘目的探索葛根素自微乳给药系统(self-microemulsifying drug delivery systems of puerarin,PUE-SMEDDS)对PUE经肠淋巴转运及其口服生物利用度的影响。方法构建SD大鼠肠系膜淋巴转运模型,口服给药后同步收集淋巴液和血样,HPLC色谱法测定PUE在淋巴液和血浆中的含量,用梯形面积法计算AUC。结果葛根素混悬液(PUE-Suspension)的淋巴转运相对较低,Cmax仅为0.39μg·m L-1,而PUE-SMEDDS的Cmax为5.77μg·m L-1,显著提高PUE肠淋巴转运(P<0.001)。PUE-Suspension在淋巴液和血浆中的AUC0-12 h分别为158.1,438.1 min·μg·m L-1,淋巴转运量占体内吸收总量的36.09%;而PUE-SMEDDS在淋巴液和血浆中的AUC0-12 h分别为1953.3,1641.3 min·μg·m L-1,淋巴转运量占体内吸收总量的54.34%,PUE-SMEDDS的相对生物利用度(Fr)为603.0%。结论 SMEDDS能同时促进PUE经淋巴转运和血液吸收,显著提高PUE的口服生物利用度,而且PUE的淋巴转运量大于血液循环。
基金Supported by the Natural Science Fund for Colleges and Universities in Jiangsu Province(No.18KJB350009)the Natural Science Fund for Colleges and Universities in Jiangsu Province(No.17KJB350009)the Natural Science Foundation of Jiangsu Province(No.BK20170445).
文摘Heparins show great anticoagulant effect with few side effects,and are administered by subcutaneous or intravenous route in clinics.To improve patient compliance,oral administration is an alternative route.Nonetheless,oral administration of heparins still faces enormous challenges due to the multiple obstacles.This review briefly analyzes a series of barriers ranging from poorly physicochemical properties of heparins,to harsh biological barriers including gastrointestinal degradation and pre-systemic metabolism.Moreover,several approaches have been developed to overcome these obstacles,such as improving stability of heparins in the gastrointestinal tract,enhancing the intestinal epithelia permeability and facilitating lymphatic delivery of heparins.Overall,this review aims to provide insights concerning advanced delivery strategies facilitating oral absorption of heparins.