Objective: To study the effect of low-level laser irradiation (LLLI) combined with ferulic acid on the osteoblast differentiation and maturation as well as osteogenesis signaling pathway expression. Methods: The crani...Objective: To study the effect of low-level laser irradiation (LLLI) combined with ferulic acid on the osteoblast differentiation and maturation as well as osteogenesis signaling pathway expression. Methods: The cranium was collected from the SD rats born within 24 h, osteoblasts were separated, cultured and then divided into control group, ferulic acid group, LLLI group, ferulic acid + LLLI group, and the expression osteoblast differentiation markers, proliferation molecules and signaling pathway molecules were detected after continuous treatment with different conditions for three days. Results: 3 d after treatment, the Bax and Bid mRNA expression in ferulic acid group, LLLI group and ferulic acid + LLLI group of cells were significantly lower than those in control group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in control group;Bax and Bid mRNA expression in ferulic acid + LLLI group of cells were significantly lower than those in ferulic acid group and LLLI group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in ferulic acid group and LLLI group;Col-I, OC, ALP, Bax, Bid, Bcl-2, CyclinD1 and E2F mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were not significantly different between ferulic acid group and LLLI group. Conclusion: Low-level laser irradiation (LLLI) combined with ferulic acid can promote osteoblast differentiation and maturation and activate osteogenesis signaling pathway.展开更多
文摘Objective: To study the effect of low-level laser irradiation (LLLI) combined with ferulic acid on the osteoblast differentiation and maturation as well as osteogenesis signaling pathway expression. Methods: The cranium was collected from the SD rats born within 24 h, osteoblasts were separated, cultured and then divided into control group, ferulic acid group, LLLI group, ferulic acid + LLLI group, and the expression osteoblast differentiation markers, proliferation molecules and signaling pathway molecules were detected after continuous treatment with different conditions for three days. Results: 3 d after treatment, the Bax and Bid mRNA expression in ferulic acid group, LLLI group and ferulic acid + LLLI group of cells were significantly lower than those in control group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in control group;Bax and Bid mRNA expression in ferulic acid + LLLI group of cells were significantly lower than those in ferulic acid group and LLLI group while Bcl-2, CyclinD1, E2F, Col-I, OC and ALP mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were significantly higher than those in ferulic acid group and LLLI group;Col-I, OC, ALP, Bax, Bid, Bcl-2, CyclinD1 and E2F mRNA expression as well as Wnt, β-catenin, Runx2, cAMP and PKA protein expression were not significantly different between ferulic acid group and LLLI group. Conclusion: Low-level laser irradiation (LLLI) combined with ferulic acid can promote osteoblast differentiation and maturation and activate osteogenesis signaling pathway.