The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and ele...The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and electrodes of LF were determined in detail. Finally, some suggestions about decreasing heat losses were presented.展开更多
对 L F合成渣脱硫、脱氧技术理论和埋弧精炼基本方法进行了分析。介绍了宝钢 30 0 t L F脱硫合成渣、脱氧合成渣和埋弧精炼技术的开发过程及应用效果。采用所开发的上述技术 ,能够批量生产 [S]≤ 10× 10 - 6的超低硫钢和 T [O]≤ 1...对 L F合成渣脱硫、脱氧技术理论和埋弧精炼基本方法进行了分析。介绍了宝钢 30 0 t L F脱硫合成渣、脱氧合成渣和埋弧精炼技术的开发过程及应用效果。采用所开发的上述技术 ,能够批量生产 [S]≤ 10× 10 - 6的超低硫钢和 T [O]≤ 15× 10 - 6的低氧钢 ,并实现了 L F全程埋弧精炼。展开更多
文摘The heat transfer analysis was performed for an industrial ladle furnace (LF) with a capacity of 55-57 t in Turkey. The heat losses by conduction, convection and radiation from outer and bottom surfaces, top and electrodes of LF were determined in detail. Finally, some suggestions about decreasing heat losses were presented.
文摘对 L F合成渣脱硫、脱氧技术理论和埋弧精炼基本方法进行了分析。介绍了宝钢 30 0 t L F脱硫合成渣、脱氧合成渣和埋弧精炼技术的开发过程及应用效果。采用所开发的上述技术 ,能够批量生产 [S]≤ 10× 10 - 6的超低硫钢和 T [O]≤ 15× 10 - 6的低氧钢 ,并实现了 L F全程埋弧精炼。