The formation mechanism for the regular octahedral structure of Liscluster is proposed. The curve of the total energy versus the separation R between any two neighboring nuclei has been calculated by using the method ...The formation mechanism for the regular octahedral structure of Liscluster is proposed. The curve of the total energy versus the separation R between any two neighboring nuclei has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of -44.736 89 a.u. at R = 5.07a0. When R approaches infinity, the total energy of six lithium atoms has the value of -44.568 17 a.u. So the binding energy of Li6 with respect to six lithium atoms is 0.1687 a.u. Therefore, the binding energy per atom for Li6 is 0.028 12 a.u., or 0.7637 eV, which is greater than the binding energy per atom of 0.453 eV for Li2 and the binding energy per atom of 0.494 eV for Li3 calculated in our previous work. This means that the Li6 cluster may be formed in a regular octahedral structure with a greater binding energy.展开更多
Argyrodites,Li_(6)PS_(5)X(X=Cl,Br,I),have piqued the interest of researchers by offering promising lithium ionic conductivity for their application in all-solid-state batteries(ASSBs).However,other than Li_(6)PS_(5)Cl...Argyrodites,Li_(6)PS_(5)X(X=Cl,Br,I),have piqued the interest of researchers by offering promising lithium ionic conductivity for their application in all-solid-state batteries(ASSBs).However,other than Li_(6)PS_(5)Cl(651Cl)and Li_(6)PS_(5)Br(651Br),Li_(6)PS_(5)I(651I)shows poor ionic conductivity(10^(-7)S cm^(-1)at 298 K).Herein,we present Al-doped 651I with I^(-)/S^(2-)site disordering to lower activation energy(Ea)and improve ionic conductivity.They formed argyrodite-type solid solutions with a composition of(Li_(6–3x)Al_(x))PS_(5)I in 0≤x≤0.10,and structural analysis revealed that Al^(3+)is located at Li sites.Also,the Al-doped samples contained anion I^(-)/S^(2-)site disorders in the crystal structures and smaller lattice parameters than the non-doped samples.Impedance spectroscopy measurements indicated that Al-doping reduced the ionic diffusion barrier,Ea,and increased the ionic conductivity to 10^(-5)S cm^(-1);the(Li5.7Al0.1)PS5I had the highest ionic conductivity in the studied system,at 2.6×10^(-5)S cm^(-1).In a lab-scale ASSB,with(Li_(5.7)Al_(0.1))PS_(5)I functioned as a solid electrolyte,demonstrating the characteristics of a pure ionic conductor with negligible electronic conductivity.The evaluated ionic conduction is due to decreased Li+content and I^(-)/S^(2-)disorder formation.Li-site cation doping enables an in-depth understanding of the structure and provides an additional approach to designing betterperforming SEs in the argyrodite system.展开更多
Lithium ion capacitors(LICs)have been widely used as energy storage devices due to their high energy density and high power density.For LICs,pre-lithiation of negative electrode is necessary.In this work,we employ a b...Lithium ion capacitors(LICs)have been widely used as energy storage devices due to their high energy density and high power density.For LICs,pre-lithiation of negative electrode is necessary.In this work,we employ a bifunctional Li6CoO4(LCO)as cathodic pre-lithiation reagent to improve the electrochemical performance of LICs.The synthesized LCO exhibited high first charge specific capacity of 721 mAh g-1and extremely low initial coulombic efficiency of 3.19%,providing sufficient Li+ for the pre-lithiation of negative electrode in the first charge.Simultaneously,Li6–xCoOy is generated from LCO during the first charge process,which exhibits pseudocapacitive property and contributes to capacity in form of surface capacitance during subsequent cycles,increasing the capacity of capacitive positive electrode.With the appropriate amounts of addition to the positive side in LICs,this bifunctional prelithiation reagent LCO shows significantly improved the electrochemical performance with the energy density of 78.5 Wh kg-1after 300 cycles between 2.0 and 4.2 V at 250 mA g-1.展开更多
This work focuses on stochastic Lienard equations with state-dependent switching. First, the existence and uniqueness of a strong solution are obtained by successive construction method. Next, strong Feller property i...This work focuses on stochastic Lienard equations with state-dependent switching. First, the existence and uniqueness of a strong solution are obtained by successive construction method. Next, strong Feller property is proved by introducing certain auxiliary processes and using the Radon-Nikodym derivatives and truncation arguments. Based on these results, positive Harris recurrence and exponential ergodicity are obtained under the Foster-Lyapunov drift conditions. Finally, examples using van der Pol equations are presented for illustrations, and the corresponding Foster-Lyapunov functions for the examples are constructed explicitly.展开更多
基金National Natural Science Foundation of China under Grant No.19974027
文摘The formation mechanism for the regular octahedral structure of Liscluster is proposed. The curve of the total energy versus the separation R between any two neighboring nuclei has been calculated by using the method of Gou's modified arrangement channel quantum mechanics (MACQM). The result shows that the curve has a minimal energy of -44.736 89 a.u. at R = 5.07a0. When R approaches infinity, the total energy of six lithium atoms has the value of -44.568 17 a.u. So the binding energy of Li6 with respect to six lithium atoms is 0.1687 a.u. Therefore, the binding energy per atom for Li6 is 0.028 12 a.u., or 0.7637 eV, which is greater than the binding energy per atom of 0.453 eV for Li2 and the binding energy per atom of 0.494 eV for Li3 calculated in our previous work. This means that the Li6 cluster may be formed in a regular octahedral structure with a greater binding energy.
基金supported by the Hundred-Talent Project of Hubei Province,China(Grant No.2021HG01)the Huanggang Young Talent+2 种基金China(Grant No.HRZF2022-5)the Pearl Scholars Research Programs(Grant Nos.P20190218,P20190219)Young Scholars Start-up Research Programs of Huanggang Normal University,China(Grant Nos.Y20190218,Y20190219)。
文摘Argyrodites,Li_(6)PS_(5)X(X=Cl,Br,I),have piqued the interest of researchers by offering promising lithium ionic conductivity for their application in all-solid-state batteries(ASSBs).However,other than Li_(6)PS_(5)Cl(651Cl)and Li_(6)PS_(5)Br(651Br),Li_(6)PS_(5)I(651I)shows poor ionic conductivity(10^(-7)S cm^(-1)at 298 K).Herein,we present Al-doped 651I with I^(-)/S^(2-)site disordering to lower activation energy(Ea)and improve ionic conductivity.They formed argyrodite-type solid solutions with a composition of(Li_(6–3x)Al_(x))PS_(5)I in 0≤x≤0.10,and structural analysis revealed that Al^(3+)is located at Li sites.Also,the Al-doped samples contained anion I^(-)/S^(2-)site disorders in the crystal structures and smaller lattice parameters than the non-doped samples.Impedance spectroscopy measurements indicated that Al-doping reduced the ionic diffusion barrier,Ea,and increased the ionic conductivity to 10^(-5)S cm^(-1);the(Li5.7Al0.1)PS5I had the highest ionic conductivity in the studied system,at 2.6×10^(-5)S cm^(-1).In a lab-scale ASSB,with(Li_(5.7)Al_(0.1))PS_(5)I functioned as a solid electrolyte,demonstrating the characteristics of a pure ionic conductor with negligible electronic conductivity.The evaluated ionic conduction is due to decreased Li+content and I^(-)/S^(2-)disorder formation.Li-site cation doping enables an in-depth understanding of the structure and provides an additional approach to designing betterperforming SEs in the argyrodite system.
基金supported by the National Natural Science Foundation of China (51974370)the Program of Huxiang Young Talents (2019RS2002)the Innovation and Entrepreneurship Project of Hunan Province, China (Grant No.2018GK5026)。
文摘Lithium ion capacitors(LICs)have been widely used as energy storage devices due to their high energy density and high power density.For LICs,pre-lithiation of negative electrode is necessary.In this work,we employ a bifunctional Li6CoO4(LCO)as cathodic pre-lithiation reagent to improve the electrochemical performance of LICs.The synthesized LCO exhibited high first charge specific capacity of 721 mAh g-1and extremely low initial coulombic efficiency of 3.19%,providing sufficient Li+ for the pre-lithiation of negative electrode in the first charge.Simultaneously,Li6–xCoOy is generated from LCO during the first charge process,which exhibits pseudocapacitive property and contributes to capacity in form of surface capacitance during subsequent cycles,increasing the capacity of capacitive positive electrode.With the appropriate amounts of addition to the positive side in LICs,this bifunctional prelithiation reagent LCO shows significantly improved the electrochemical performance with the energy density of 78.5 Wh kg-1after 300 cycles between 2.0 and 4.2 V at 250 mA g-1.
基金Supported by the National Natural Science Foundation of China(No.11171024)the National Science Foundation,United States(No.DMS-0907753)
文摘This work focuses on stochastic Lienard equations with state-dependent switching. First, the existence and uniqueness of a strong solution are obtained by successive construction method. Next, strong Feller property is proved by introducing certain auxiliary processes and using the Radon-Nikodym derivatives and truncation arguments. Based on these results, positive Harris recurrence and exponential ergodicity are obtained under the Foster-Lyapunov drift conditions. Finally, examples using van der Pol equations are presented for illustrations, and the corresponding Foster-Lyapunov functions for the examples are constructed explicitly.