A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n cop...A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.展开更多
With biodegradable material poly(ethylene glycol)-poly(lactide-co-glycolide) (PEG-PLGA) as substrate, the size distribution of Rg3-NPs was approved by the scanning electron microscopy. MTT assay was used to dete...With biodegradable material poly(ethylene glycol)-poly(lactide-co-glycolide) (PEG-PLGA) as substrate, the size distribution of Rg3-NPs was approved by the scanning electron microscopy. MTT assay was used to detect the effects of Rg3-NPs on the growth rate of C6 cells at various concentrations and flow cytometry(FCM) was applied to assay the cell cycle and cell apoptosis of C6 glioma cells. Western blot analysis was used to measure the protein level of PCNA. The results show that Rg3-NPs are slick and uniformity, the average diameter of the nanoparticles is about 75-90 nm, entrapment efficiency is (89.7±1.7)%. MTT assay shows the growth of C6 Glioma Cells can be significantly inhibited by Rg3-NPs in a dose-dependence manner. FCM and Western blot analysis show Rg3 can be released from the conjugated nanoparticles to function in the cell nuclei so as to lead to the changes in the growth cycle of the cells, which results in the arrest of G0-G1 cell cycle and induces the apoptosis of C6 cells. Therefore, Rg3-NPs may be used for the auxiliary therapy of brain glioma.展开更多
文摘A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.
基金Supported by the National Natural Science Foundation of China(No.30471769)
文摘With biodegradable material poly(ethylene glycol)-poly(lactide-co-glycolide) (PEG-PLGA) as substrate, the size distribution of Rg3-NPs was approved by the scanning electron microscopy. MTT assay was used to detect the effects of Rg3-NPs on the growth rate of C6 cells at various concentrations and flow cytometry(FCM) was applied to assay the cell cycle and cell apoptosis of C6 glioma cells. Western blot analysis was used to measure the protein level of PCNA. The results show that Rg3-NPs are slick and uniformity, the average diameter of the nanoparticles is about 75-90 nm, entrapment efficiency is (89.7±1.7)%. MTT assay shows the growth of C6 Glioma Cells can be significantly inhibited by Rg3-NPs in a dose-dependence manner. FCM and Western blot analysis show Rg3 can be released from the conjugated nanoparticles to function in the cell nuclei so as to lead to the changes in the growth cycle of the cells, which results in the arrest of G0-G1 cell cycle and induces the apoptosis of C6 cells. Therefore, Rg3-NPs may be used for the auxiliary therapy of brain glioma.