期刊文献+
共找到188篇文章
< 1 2 10 >
每页显示 20 50 100
Robust Classification through a Nonparametric Kernel Discriminant Analysis 被引量:1
1
作者 Macdonald G. Obudho George O. Orwa +1 位作者 Romanus O. Otieno Festus A. Were 《Open Journal of Statistics》 2022年第4期443-455,共13页
The problem of classification in situations where the assumption of normality in the data is violated, and there are non-linear clustered structures in the dataset is addressed. A robust nonparametric kernel discrimin... The problem of classification in situations where the assumption of normality in the data is violated, and there are non-linear clustered structures in the dataset is addressed. A robust nonparametric kernel discriminant classification function, which is able to address this challenge, has been developed and the misclassification rates computed for various bandwidth matrices. A comparison with existing parametric classification functions such as the linear discriminant and quadratic discriminant is conducted to evaluate the performance of this classification function using simulated datasets. The results presented in this paper show good performance in terms of misclassification rates for the kernel discriminant classifier when the correct bandwidth is selected as compared to other identified existing classifiers. In this regard, the study recommends the use of the proposed kernel discriminant classification rule when one wishes to classify units into one of several categories or population groups where parametric classifiers might not be applicable. 展开更多
关键词 discriminant Analysis kernel discriminant NONPARAMETRIC
下载PDF
Classification of Stateless People through a Robust Nonparametric Kernel Discriminant Function
2
作者 Macdonald G. Obudho George O. Orwa +1 位作者 Romanus O. Otieno Festus A. Were 《Open Journal of Statistics》 2022年第5期563-580,共18页
Statelessness is the absence of any Nationality. These include the Pemba, Shona, Galjeel, people of Burundi and Rwanda descent, and children born in Kenya to British Overseas Citizens after 1983. Frequently, they are ... Statelessness is the absence of any Nationality. These include the Pemba, Shona, Galjeel, people of Burundi and Rwanda descent, and children born in Kenya to British Overseas Citizens after 1983. Frequently, they are not only undocumented but also often overlooked and not included in National Administrative Registers. Accordingly, find it hard to participate in Social and Economic Affairs. There has been a major push by UNHCR and international partners to “map” the size of stateless populations and their demographic profile, as well as causes, potential solutions and human rights situation. One of the requirements by the UNHCR in their push is for countries to find a potential solution to statelessness which starts with classifying/associating a person from these communities to a particular local community that is recognized in Kenya. This paper addresses this problem by adopting a Robust Nonparametric Kernel Discriminant function to correctly classify the stateless communities in Kenya and compare the performance of this method with the existing techniques through their classification rates. This is because Non-parametric functions have proven to be more robust and useful especially when there exists auxiliary information which can be used to increase precision. The findings from this paper indicate that Nonparametric discriminant classifiers provide a good classification method for classifying the stateless communities in Kenya. This is because they exhibit lower classification rates compared to the parametric methods such as Linear and Quadratic discriminant functions. In addition, the finding shows that based on certain similarities in characteristics that exist in these communities that surround the Pemba Community, the Pemba community can be classified as Giriama or Rabai in which they seem to have a strong link. In this regard, the study recommends the use of the Kernel discriminant classifiers in classifying the stateless persons and that the Government of Kenya consider integrating/recognizing the Pe 展开更多
关键词 discriminant Analysis kernel discriminant NONPARAMETRIC CLASSIFICATION Statelessness
下载PDF
多模型融合的多标签图像自动标注 被引量:10
3
作者 张静 胡微微 +1 位作者 陈志华 袁玉波 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第3期472-478,共7页
为了实现更为准确的复杂语义内容图像理解,提出一种融合多模型的多标签图像自动标注方法.该方法采用3个不同的模型分别对图像语义内容进行分析:在前景语义概念检测中,提出一种基于多特征的视觉显著性分析方法,并利用多Nystrm近似核对... 为了实现更为准确的复杂语义内容图像理解,提出一种融合多模型的多标签图像自动标注方法.该方法采用3个不同的模型分别对图像语义内容进行分析:在前景语义概念检测中,提出一种基于多特征的视觉显著性分析方法,并利用多Nystrm近似核对前景对象的语义进行判别分析;对于背景概念检测,提出一种区域语义分析的方法;通过构造基于潜语义分析的语义相关矩阵来消除标注错误的标签.根据前景和背景的语义和视觉特征,分别采用不同的模型提取前景和背景标注词,而语义相关分析能够有效地提高标注的准确性.实验结果表明,该多模型融合标注方法在图像的深层语义分析以及多标签标注方面具有较好的效果;与同类算法相比,能够有效地减少错误标注的标签数目,得到更加准确的标注结果. 展开更多
关键词 图像标注 多模型 MNKDA 区域语义分析 语义相关分析
下载PDF
基于特征融合和模糊核判别分析的面部表情识别方法 被引量:5
4
作者 周晓彦 郑文明 +1 位作者 邹采荣 赵力 《中国图象图形学报》 CSCD 北大核心 2009年第8期1615-1620,共6页
提出了基于特征融合和模糊核判别分析(FKDA)的面部表情识别方法。首先,从每幅人脸图像中手工定位34个基准点,作为面部表情图像的几何特征,同时采用Gabor小波变换方法对每幅表情图像进行变换,并提取基准点处的Gabor小波系数值作为表情图... 提出了基于特征融合和模糊核判别分析(FKDA)的面部表情识别方法。首先,从每幅人脸图像中手工定位34个基准点,作为面部表情图像的几何特征,同时采用Gabor小波变换方法对每幅表情图像进行变换,并提取基准点处的Gabor小波系数值作为表情图像的Gabor特征;其次,利用典型相关分析技术对几何特征和Gabor特征进行特征融合,作为表情识别的输入特征;然后,利用模糊核判别分析方法进一步提取表情的鉴别特征;最后,采用最近邻分类器完成表情的分类识别。通过在JAFFE国际表情数据库和Ekman"面部表情图片"数据库上的实验,证实了所提方法的有效性。 展开更多
关键词 模糊核判别分析 核判别分析 面部表情识别
下载PDF
一种新颖混合贝叶斯分类模型研究 被引量:5
5
作者 李旭升 郭耀煌 《计算机科学》 CSCD 北大核心 2006年第9期135-139,共5页
朴素贝叶斯分类器(Naive Bayesian classmer,NB)是一种简单而有效的分类模型,但这种分类器缺乏对训练集信息的充分利用,影响了它的分类性能。通过分析NB的分类原理,并结合线性判别分析(Linear Discriminant A- nalysis,LDA)与核判别分析... 朴素贝叶斯分类器(Naive Bayesian classmer,NB)是一种简单而有效的分类模型,但这种分类器缺乏对训练集信息的充分利用,影响了它的分类性能。通过分析NB的分类原理,并结合线性判别分析(Linear Discriminant A- nalysis,LDA)与核判别分析(Kemel Discriminant Analysis,KDA)的优点,提出了一种混合贝叶斯分类模型DANB (Discriminant Analysis Naive Bayesian classifier,DANB)。将该分类方法与NB和TAN(Tree Augmented Naive Bayesian classifier,TAN)进行实验比较,结果表明,在大多数数据集上,DANB分类器具有较高的分类正确率。 展开更多
关键词 朴素贝叶斯分类器 线性判别分析 核判别分析 TAN分类器
下载PDF
基于DCT和KDA的人脸特征提取新方法 被引量:2
6
作者 王孝国 张雄伟 《电子科技大学学报》 EI CAS CSCD 北大核心 2006年第4期450-453,共4页
提出了一种新的人脸特征提取方法,该方法采用DCT对人脸图像进行降维和去噪,并通过KDA提取人脸特征。基于该特征,采用NN分类器,对ORL人脸库进行分类识别,仅用28个特征平均识别率就达到97.3%,“留一法”识别率为99.5%。仿真结果表明:该方... 提出了一种新的人脸特征提取方法,该方法采用DCT对人脸图像进行降维和去噪,并通过KDA提取人脸特征。基于该特征,采用NN分类器,对ORL人脸库进行分类识别,仅用28个特征平均识别率就达到97.3%,“留一法”识别率为99.5%。仿真结果表明:该方法有效地滤除了人脸图像中的高频干扰信息,明显增强了特征的辨别能力,同时显著地降低了特征维数和计算复杂度。 展开更多
关键词 人脸识别 核辨别分析 最近邻分类器
下载PDF
基于正则化多核判别分析的航空发动机滚动轴承早期故障融合诊断方法 被引量:6
7
作者 郝腾飞 陈果 +3 位作者 廖仲坤 程小勇 赵斌 王海飞 《航空动力学报》 EI CAS CSCD 北大核心 2013年第12期2759-2770,共12页
针对基于机匣测点信号的航空发动机滚动轴承早期故障诊断问题,提出了一种基于正则化多核判别分析的融合诊断方法.该方法首先提取多种类型的滚动轴承故障特征;然后采用相同的一组核参数为不同类型的特征分别构造一组核矩阵,并将所有核矩... 针对基于机匣测点信号的航空发动机滚动轴承早期故障诊断问题,提出了一种基于正则化多核判别分析的融合诊断方法.该方法首先提取多种类型的滚动轴承故障特征;然后采用相同的一组核参数为不同类型的特征分别构造一组核矩阵,并将所有核矩阵组合在一起;最后通过求解一个半无限线性规划得到该组核矩阵关于正则化核判别分析的目标函数的最优线性组合系数,进一步采用该系数计算所有核矩阵的线性组合,从而实现多种类型特征信息的融合.实验结果表明:该方法诊断正确率与采用单一类型特征诊断的最高正确率相比提高了9.25%,同时可以避免核矩阵需要人工选择的问题,从而进一步提高了故障诊断的自动化水平. 展开更多
关键词 航空发动机 滚动轴承 融合诊断 多核学习 正则化核判别分析
原文传递
一种融合KPCA和KDA的人脸识别新方法 被引量:4
8
作者 周晓彦 郑文明 《计算机应用》 CSCD 北大核心 2008年第5期1263-1266,共4页
核判别分析(KDA)和核主成分分析(KPCA)分别是线性判别分析(LDA)和主成分分析(PCA)在核空间中的非线性推广,提出了一种融合KDA和KPCA的特征提取方法并应用于人脸识别中,该方法综合利用KDA和KPCA的优点来提高人脸识别的性能。此外,还提出... 核判别分析(KDA)和核主成分分析(KPCA)分别是线性判别分析(LDA)和主成分分析(PCA)在核空间中的非线性推广,提出了一种融合KDA和KPCA的特征提取方法并应用于人脸识别中,该方法综合利用KDA和KPCA的优点来提高人脸识别的性能。此外,还提出了一种广义最近特征线(GNFL)方法来构造有效的分类器。实验结果证明:提出的方法获得了更好的识别结果。 展开更多
关键词 核判别分析 核主成分分析 广义最近特征线 人脸识别
下载PDF
L_(2,1)范数正则化的广义核判别分析及其人脸识别 被引量:6
9
作者 傅俊鹏 陈秀宏 葛骁倩 《计算机科学与探索》 CSCD 北大核心 2017年第1期124-133,共10页
特征选取和子空间学习是人脸识别的关键问题。为更准确选取人脸中丰富的非线性特征,并解决小样本问题,提出了一种新的L_(2,1)范数正则化的广义核判别分析(generalized kernel discriminant analysis based on L_(2,1)-norm regularizati... 特征选取和子空间学习是人脸识别的关键问题。为更准确选取人脸中丰富的非线性特征,并解决小样本问题,提出了一种新的L_(2,1)范数正则化的广义核判别分析(generalized kernel discriminant analysis based on L_(2,1)-norm regularization,L21GKDA)。利用核函数将原始样本隐式地映射到高维特征空间中,得到广义核Fisher鉴别准则,再利用一种有效变换将该非线性模型转化为线性回归模型;为了能使特征选取和子空间学习同时进行,在模型中加入了一种L_(2,1)范数惩罚项,并给出该正则化方法的求解算法。因为方法借助于L_(2,1)范数惩罚项的特征选取能力,所以它能有效地提高识别率。在ORL、AR和PIE人脸库上的实验结果表明,新算法能有效选取人脸的非线性特征,提高判别能力。 展开更多
关键词 人脸识别 特征选取 子空间学习 L2 1范数 核判别分析
下载PDF
基于QR分解的辨别分析用于雷达目标一维距离像识别 被引量:5
10
作者 刘华林 杨万麟 《电子测量与仪器学报》 CSCD 2007年第5期31-34,共4页
文中提出了基于QR分解的线性辨别分析与非线性核辨别分析方法,并将其用于雷达目标一维距离像识别。与传统Fisher辨别分析方法相比,新方法运用QR分解取代奇异值分解或伪逆方式以实现样本类间与类内散度矩阵的对角化,不仅有效地降低了算... 文中提出了基于QR分解的线性辨别分析与非线性核辨别分析方法,并将其用于雷达目标一维距离像识别。与传统Fisher辨别分析方法相比,新方法运用QR分解取代奇异值分解或伪逆方式以实现样本类间与类内散度矩阵的对角化,不仅有效地降低了算法的计算时间与空间复杂度,提高了系统的实时性能,同时也保证了较高的识别率。对三类不同实测飞机数据的识别结果表明了所提方法的有效性。 展开更多
关键词 雷达目标识别 线性辨别分析 核辨别分析 QR分解
下载PDF
极速非线性判别分析网络 被引量:4
11
作者 谢群辉 陈松灿 《数据采集与处理》 CSCD 北大核心 2018年第3期446-454,共9页
由于线性判别分析仅是线性方法,难以有效应对非线性问题,而对其非线性化是解决这一问题的关键途径。非线性化判别方法主要包括神经网络和核化方法。神经网络判别分析方法虽然继承了神经网络所具有的自适应、分布存储、并行处理和非线性... 由于线性判别分析仅是线性方法,难以有效应对非线性问题,而对其非线性化是解决这一问题的关键途径。非线性化判别方法主要包括神经网络和核化方法。神经网络判别分析方法虽然继承了神经网络所具有的自适应、分布存储、并行处理和非线性映射等优点,但也遗传了其训练速度慢且易陷入局部最小值缺点;而核线性判别分析方法虽能获得全局最优解析解,但因受制于隐节点数目(等于样本个数),当数据规模大时,计算成本变大。本文受随机映射启发,对神经网络判别分析方法进行极速化改造,实现了一种极速非线性判别分析方法,兼具神经网络的自适应性和全局最优解的快速性。最后在UCI真实数据集上的实验表明,极速非线性判别分析方法具有更优的分类性能。 展开更多
关键词 线性判别分析 神经网络 核判别分析 极速化
下载PDF
基于Hermite特征和核函数判决分析的人脸识别 被引量:4
12
作者 刘靖 周激流 《光电子.激光》 EI CAS CSCD 北大核心 2006年第1期119-123,共5页
提出了基于Hermite特征和核函数判决分析(KDA)方法的人脸识别技术,即首先利用多分辨Hermite分析提取人脸图像特征,然后用KDA方法进行分类识别。采用拟Gabor的多分辨Hermite分析能够提取人脸图像中具有空间频率特性、空间位置和方向取向... 提出了基于Hermite特征和核函数判决分析(KDA)方法的人脸识别技术,即首先利用多分辨Hermite分析提取人脸图像特征,然后用KDA方法进行分类识别。采用拟Gabor的多分辨Hermite分析能够提取人脸图像中具有空间频率特性、空间位置和方向取向选择特性的判决特征,从而较好地克服由于光照强度、脸部表情变化带来的影响。KDA方法能够提取高维特征空间中的最佳判决特征,本质上对应于原始空间中的非线性最佳判决特征,具有较好的聚类判决分析性能。实验仿真表明了所提方法的有效性。 展开更多
关键词 多分辨 HERMITE变换 核函数判决分析(KDA) 人脸识别
原文传递
基于SRKDA的系统故障演化过程分解方法研究 被引量:1
13
作者 崔铁军 李莎莎 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第3期196-202,共7页
为研究系统故障演化过程中可能蕴含的多种演化特征,对演化过程的分解进行研究,提出基于谱回归核判别分析(SRKDA)的演化过程分解方法。首先介绍演化过程的特点和分解原理,其次论证对象集合对演化过程的可表示性,给出分解方法流程,最后进... 为研究系统故障演化过程中可能蕴含的多种演化特征,对演化过程的分解进行研究,提出基于谱回归核判别分析(SRKDA)的演化过程分解方法。首先介绍演化过程的特点和分解原理,其次论证对象集合对演化过程的可表示性,给出分解方法流程,最后进行实例分析。研究结果表明:分解演化过程本质上是对象与系统功能状态对应关系的确定,各对象集合都对应了各自的子演化过程;线性和非线性条件下对象可表示各种功能状态;对象标签矩阵须满足标签值的均匀分布特征;使用SRKDA算法可以确定最大准确度和最优对象标签集合,实现演化过程的分解;实例分析得到在20000次迭代后最大准确度为0.85,3个子演化过程分别包含41,33,26个对象。研究结果可为系统故障过程的特征分析提供参考方法。 展开更多
关键词 安全系统工程 系统故障演化过程 SRKDA 演化分解方法 最大准确度 对象标签矩阵
下载PDF
基于改进的核判别分析的人脸识别算法研究 被引量:4
14
作者 赵颖 《哈尔滨理工大学学报》 CAS 北大核心 2010年第3期19-22,共4页
由于目前面临光照、表情、姿态等影响,人脸识别是计算机视觉领域中的一个难题.由于人脸图像蕴含着丰富的纹理信息,充分利用纹理特征也是提高人脸识别算法的有效方法.利用图像处理中信号处理和学习两种方法的优势,提出了基于Gabor小波和K... 由于目前面临光照、表情、姿态等影响,人脸识别是计算机视觉领域中的一个难题.由于人脸图像蕴含着丰富的纹理信息,充分利用纹理特征也是提高人脸识别算法的有效方法.利用图像处理中信号处理和学习两种方法的优势,提出了基于Gabor小波和KDCV相结合的图像特征提取算法.首先利用小波分析提取人脸图像的纹理特征,然后用改进的核判别分析方法对提取的纹理特征进行降维,用降维后的数据作为人脸识别的特征.通过仿真实验表明,改进的核判别分析算法可有效提高人脸识别正确率,提高算法的实际应用性. 展开更多
关键词 人脸识别 特征提取 图像处理 核判别分析
下载PDF
基于模糊核判别分析的基因表达数据分析方法 被引量:2
15
作者 周晓彦 郑文明 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第S1期173-176,共4页
针对基因表达数据空间分布的特性,提出了一种基于模糊核判别分析的基因表达数据分析方法.方法综合了模糊数学以及核判别分析方法的优点,提高了对基因表达数据分类识别的准确性.以多发性骨髓瘤的基因表达数据为例进行了实验,从实验结果... 针对基因表达数据空间分布的特性,提出了一种基于模糊核判别分析的基因表达数据分析方法.方法综合了模糊数学以及核判别分析方法的优点,提高了对基因表达数据分类识别的准确性.以多发性骨髓瘤的基因表达数据为例进行了实验,从实验结果可以看出,采用模糊核判别分析方法可以得到最佳的识别效果. 展开更多
关键词 模糊核判别分析 基因表达数据 生物信息学
下载PDF
核不相关鉴别分析以及它在字符识别中的应用 被引量:1
16
作者 梁志贞 施鹏飞 《计算机研究与发展》 EI CSCD 北大核心 2006年第1期132-137,共6页
核不相关鉴别分析是在线性不相关鉴别分析的基础上发展起来的·然而,由于核函数的运用,计算核不相关矢量集变得更加复杂·为了解决这个问题,提出一种解决核不相关鉴别分析的有效算法·该算法巧妙地利用了矩阵的分解,然后在... 核不相关鉴别分析是在线性不相关鉴别分析的基础上发展起来的·然而,由于核函数的运用,计算核不相关矢量集变得更加复杂·为了解决这个问题,提出一种解决核不相关鉴别分析的有效算法·该算法巧妙地利用了矩阵的分解,然后在一个矩阵对上进行广义奇异值分解·与此同时,提出了几个相关的定理·最重要的是,提出的算法能克服核不相关鉴别分析中矩阵的奇异问题·在某种意义上,提出的算法拓宽了已有的算法,即从线性问题到非线性问题·最后,用手写数字字符识别实验来验证提出的算法是可行和有效的· 展开更多
关键词 核鉴别分析 广义奇异值分解 核不相关鉴别分析 手写数字字符
下载PDF
一种基于离散小波变换和支持向量机的人脸识别新方法 被引量:1
17
作者 王孝国 张小宁 +1 位作者 杨吉斌 张雄伟 《解放军理工大学学报(自然科学版)》 EI 2006年第6期515-519,共5页
为提高人脸识别系统的性能,提出了一种基于离散小波变换DW T(d iscrete w avelet transform)特征提取和支持向量机(SVM)分类的人脸识别方法。首先,采用DW T对人脸图像进行降维和去噪,然后,对小波低频子图像进行核辨别分析(KDA)提取人脸... 为提高人脸识别系统的性能,提出了一种基于离散小波变换DW T(d iscrete w avelet transform)特征提取和支持向量机(SVM)分类的人脸识别方法。首先,采用DW T对人脸图像进行降维和去噪,然后,对小波低频子图像进行核辨别分析(KDA)提取人脸特征,最后,结合SVM进行分类识别。基于该方法,对ORL人脸库进行分类识别,采用39个特征识别率达到98.2%。仿真结果表明,该方法明显减少了高频干扰对人脸特征的影响,增强了特征的辨别能力。而且,SVM有效地提高了分类器的分类和推广能力。 展开更多
关键词 人脸识别 小波分析 核辨别分析 支持向量机
下载PDF
有效的协方差判别学习算法 被引量:3
18
作者 王秀友 刘华明 +1 位作者 范建中 徐冬青 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第10期1847-1857,共11页
在基于视频的图像集分类中,类内样本多样性问题是影响算法分类性能的一个主要原因.为了尝试解决该问题,提出了一种图像集分类算法,其目标体现在2个方面:(1)使得算法在时间效率上相较于协方差判别学习(CDL)等具有代表性的图像集分类算法... 在基于视频的图像集分类中,类内样本多样性问题是影响算法分类性能的一个主要原因.为了尝试解决该问题,提出了一种图像集分类算法,其目标体现在2个方面:(1)使得算法在时间效率上相较于协方差判别学习(CDL)等具有代表性的图像集分类算法有进一步的提升;(2)使得算法在分类精度上也仍然具有可比性.首先利用双向二维主成分分析对原始的协方差特征进行降维,使其变得更加紧凑.同时,为了抽取到更具判别性的特征信息,对每一个低维紧凑的协方差矩阵应用QR分解,使其变换成一个正交基矩阵和一个非奇异的上三角矩阵.考虑数据分布空间的黎曼流形特性,通过定义函数的方式使得上三角矩阵仍然分布在由对称正定(SPD)矩阵张成的SPD流形之上.此时,原始的样本空间就转化成了一个由正交基矩阵张成的Grassmann流形和一个特征分布更加紧凑的新的SPD流形.为了更好地整合这2种黎曼流形特征,首先利用Stein散度以及对数欧氏距离导出一个黎曼流形测地线距离度量;然后,利用该度量设计一个正定的核函数将上述特征映射到一个高维Hilbert核空间;最后,利用核判别分析算法进行判别子空间特征学习.文中算法在5个基准视频集YTC, Honda, ETH-80, MDSD以及AFEW上均取得了较好的分类结果,同时在计算效率上也优于CDL等对比算法,从而表明了其可行性和有效性. 展开更多
关键词 协方差鉴别学习 黎曼流形 双向二维主成分分析 QR分解 对数欧氏距离 Stein散度 核判别分析
下载PDF
柑橘黄龙病检测的近红外光谱集成建模方法 被引量:4
19
作者 贺胜晖 李灵巧 +2 位作者 刘彤 刘振丙 杨辉华 《分析科学学报》 CAS CSCD 北大核心 2020年第2期287-290,共4页
针对黄龙病检测问题,提出了一种集成了多特征提取模型和多分类器的柑橘黄龙病检测算法。将谱回归核判别分析和主成分分析并行融合进行特征提取,将偏最小二乘判别分析、决策树和支持向量机利用Stacking策略融合完成分类任务。基于3个主... 针对黄龙病检测问题,提出了一种集成了多特征提取模型和多分类器的柑橘黄龙病检测算法。将谱回归核判别分析和主成分分析并行融合进行特征提取,将偏最小二乘判别分析、决策树和支持向量机利用Stacking策略融合完成分类任务。基于3个主要柑橘品种共1620条近红外光谱数据,与单特征提取单分类器方法和多特征提取单分类器方法进行对比,集成分类模型的正确率可达98.52%,精度在98.57%以上,F2得分可达98.01%。实验结果表明,集成分类模型明显优于单特征提取单分类模型和多特征提取单分类模型,证明利用集成分类模型进行柑橘黄龙病的无损检测是可行的,为其他领域的光谱分类提供参考。 展开更多
关键词 集成学习 黄龙病 近红外光谱 谱回归核判别分析 Stacking策略
下载PDF
基于零空间核判别分析的人脸识别 被引量:4
20
作者 陈达遥 陈秀宏 董昌剑 《计算机研究与发展》 EI CSCD 北大核心 2013年第9期1924-1932,共9页
提取有效特征对高维数据的模式分类起着关键作用.零空间线性判别分析(null-space linear discriminant analysis,NLDA)在数据降维和特征提取上表现出较好的性能,但是该方法本质上仍是一种线性方法.为有效提取数据的非线性特征,提出了零... 提取有效特征对高维数据的模式分类起着关键作用.零空间线性判别分析(null-space linear discriminant analysis,NLDA)在数据降维和特征提取上表现出较好的性能,但是该方法本质上仍是一种线性方法.为有效提取数据的非线性特征,提出了零空间核判别分析算法(null-space kernel discriminant analysis,NKDA)并将其应用于人脸识别.利用核函数将原始样本隐式地映射到高维特征空间后,采用一次瘦QR分解求核类内散布矩阵的零空间鉴别矢量集,最后再进行一次Cholesky分解求得具正交性的核空间鉴别矢量集.与NLDA相比,NKDA具有更好的识别性能且在大样本情况下也能应用.另外,基于NKDA,提出了增量NKDA算法,当增加新的训练样本时能正确地更新NKDA鉴别矢量集.在ORL库、Yale库和PIE子库上的实验结果表明了算法的有效性和效率,在有效降维的同时能进一步提高鉴别能力. 展开更多
关键词 人脸识别 特征提取 零空间核判别分析 零空间线性判别分析 增量学习 瘦QR分解
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部