摘要
在基于视频的图像集分类中,类内样本多样性问题是影响算法分类性能的一个主要原因.为了尝试解决该问题,提出了一种图像集分类算法,其目标体现在2个方面:(1)使得算法在时间效率上相较于协方差判别学习(CDL)等具有代表性的图像集分类算法有进一步的提升;(2)使得算法在分类精度上也仍然具有可比性.首先利用双向二维主成分分析对原始的协方差特征进行降维,使其变得更加紧凑.同时,为了抽取到更具判别性的特征信息,对每一个低维紧凑的协方差矩阵应用QR分解,使其变换成一个正交基矩阵和一个非奇异的上三角矩阵.考虑数据分布空间的黎曼流形特性,通过定义函数的方式使得上三角矩阵仍然分布在由对称正定(SPD)矩阵张成的SPD流形之上.此时,原始的样本空间就转化成了一个由正交基矩阵张成的Grassmann流形和一个特征分布更加紧凑的新的SPD流形.为了更好地整合这2种黎曼流形特征,首先利用Stein散度以及对数欧氏距离导出一个黎曼流形测地线距离度量;然后,利用该度量设计一个正定的核函数将上述特征映射到一个高维Hilbert核空间;最后,利用核判别分析算法进行判别子空间特征学习.文中算法在5个基准视频集YTC, Honda, ETH-80, MDSD以及AFEW上均取得了较好的分类结果,同时在计算效率上也优于CDL等对比算法,从而表明了其可行性和有效性.
In the field of video-based image set classification, intra-class diversity is one of the main factors affecting the classification performance of image set classification algorithms. To seek a possible way to tackle this problem, this paper presents a novel image set classification algorithm, and our goals lie in two aspects. The first is to make the proposed algorithm have a certain improvement in time efficiency compared to some representative image set classification methods such as covariance discriminant learning(CDL), and the second is to make the proposed algorithm still comparable in classification performance. In order to compact the original covariance features, the two-directional two-dimensional principal component analysis((2 D)2 PCA) is firstly exploited to perform dimensionality reduction. Then, the QR decomposition technique is applied to convert each into a nonsingular upper triangular matrix and an orthonormal basis matrix for the sake of extracting more discriminative feature information. Taking the Riemannian manifold property into account, a function is defined to make the nonsingular upper triangular matrix still reside on the symmetric positive definite(SPD) manifold which spanned by a set of SPD matrices. As a result, the original sample space is now transformed into a lower dimensional and more compact SPD manifold and a Grassmann manifold, respectively. To better integrate these two types of generated Riemannian manifold-valued features, a new Riemannian manifold geodesic distance metric is first induced by making use of Stein divergence and log-Euclidean distance(LED). Afterwards, a positive definite kernel is devised to embed these features into a high dimensional Hilbert space. Finally, the kernel discriminant analysis(KDA) algorithm is utilized to perform discriminant subspace feature learning. The proposed algorithm is evaluated on several benchmark video datasets. Extensive experimental results demonstrate its superiority in terms of classification result and computation time.
作者
王秀友
刘华明
范建中
徐冬青
Wang Xiuyou;Liu Huaming;Fan Jianzhong;Xu Dongqing(School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236037)
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2019年第10期1847-1857,共11页
Journal of Computer-Aided Design & Computer Graphics
基金
安徽省高校优秀青年骨干人才项目(gxfx2017072)
安徽省自然科学基金(1708085MF155)
阜阳市政府—阜阳师范大学横向合作科研项目(XDHX2016020、XDHX201710)
安徽省教育厅自然科学研究重点项目(KJ2018A0345)
关键词
协方差鉴别学习
黎曼流形
双向二维主成分分析
QR分解
对数欧氏距离
Stein散度
核判别分析
covariance discriminant learning (CDL)
Riemannian manifold
two-directional two-dimensional principal component analysis((2D)2PCA)
QR decomposition
log-Euclidean distance(LED)
Stein divergence
kernel discriminant analysis(KDA)