The production of extra cellular lipase in Solid State Fermentation (SSF) using Yarrowia lipolytica NCIM 3589 with Palm Kernal cake (Elaeis guineensis) has been studied. Different parameters such as incubation time, i...The production of extra cellular lipase in Solid State Fermentation (SSF) using Yarrowia lipolytica NCIM 3589 with Palm Kernal cake (Elaeis guineensis) has been studied. Different parameters such as incubation time, inoculum level, initial moisture content, carbon level and nitrogen level of the medium were optimized. Screening of various process variables has been accomplished with the help of Plackett-Burman design. The maximum lipase activity of 18.58 units per gram of dry fermented substrate (U/gds) was observed with the substrate of Palm Kernal cake in four days of fermentation.展开更多
The trace of the wave kernel μ(t) =∑ω=1^∞ exp(-itEω^1/2), where {Eω}ω^∞=1 are the eigenvalues of the negative Laplacian -△↓2 = -∑k^3=1 (δ/δxk)^2 in the (x^1, x^2, x^3)-space, is studied for a vari...The trace of the wave kernel μ(t) =∑ω=1^∞ exp(-itEω^1/2), where {Eω}ω^∞=1 are the eigenvalues of the negative Laplacian -△↓2 = -∑k^3=1 (δ/δxk)^2 in the (x^1, x^2, x^3)-space, is studied for a variety of bounded domains, where -∞ 〈 t 〈 ∞ and i= √-1. The dependence of μ (t) on the connectivity of bounded domains and the Dirichlet, Neumann and Robin boundary conditions are analyzed. Particular attention is given for a multi-connected vibrating membrane Ω in Ra surrounded by simply connected bounded domains Ω j with smooth bounding surfaces S j (j = 1,……, n), where a finite number of piecewise smooth Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth components Si^* (i = 1 + kj-1,……, kj) of the bounding surfaces S j are considered, such that S j = Ui-1+kj-1^kj Si^*, where k0=0. The basic problem is to extract information on the geometry Ω by using the wave equation approach from a complete knowledge of its eigenvalues. Some geometrical quantities of Ω (e.g. the volume, the surface area, the mean curvuture and the Gaussian curvature) are determined from the asymptotic expansion ofexpansion of μ(t) for small │t│.展开更多
文摘The production of extra cellular lipase in Solid State Fermentation (SSF) using Yarrowia lipolytica NCIM 3589 with Palm Kernal cake (Elaeis guineensis) has been studied. Different parameters such as incubation time, inoculum level, initial moisture content, carbon level and nitrogen level of the medium were optimized. Screening of various process variables has been accomplished with the help of Plackett-Burman design. The maximum lipase activity of 18.58 units per gram of dry fermented substrate (U/gds) was observed with the substrate of Palm Kernal cake in four days of fermentation.
文摘The trace of the wave kernel μ(t) =∑ω=1^∞ exp(-itEω^1/2), where {Eω}ω^∞=1 are the eigenvalues of the negative Laplacian -△↓2 = -∑k^3=1 (δ/δxk)^2 in the (x^1, x^2, x^3)-space, is studied for a variety of bounded domains, where -∞ 〈 t 〈 ∞ and i= √-1. The dependence of μ (t) on the connectivity of bounded domains and the Dirichlet, Neumann and Robin boundary conditions are analyzed. Particular attention is given for a multi-connected vibrating membrane Ω in Ra surrounded by simply connected bounded domains Ω j with smooth bounding surfaces S j (j = 1,……, n), where a finite number of piecewise smooth Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth components Si^* (i = 1 + kj-1,……, kj) of the bounding surfaces S j are considered, such that S j = Ui-1+kj-1^kj Si^*, where k0=0. The basic problem is to extract information on the geometry Ω by using the wave equation approach from a complete knowledge of its eigenvalues. Some geometrical quantities of Ω (e.g. the volume, the surface area, the mean curvuture and the Gaussian curvature) are determined from the asymptotic expansion ofexpansion of μ(t) for small │t│.