摘要
The trace of the wave kernel μ(t) =∑ω=1^∞ exp(-itEω^1/2), where {Eω}ω^∞=1 are the eigenvalues of the negative Laplacian -△↓2 = -∑k^3=1 (δ/δxk)^2 in the (x^1, x^2, x^3)-space, is studied for a variety of bounded domains, where -∞ 〈 t 〈 ∞ and i= √-1. The dependence of μ (t) on the connectivity of bounded domains and the Dirichlet, Neumann and Robin boundary conditions are analyzed. Particular attention is given for a multi-connected vibrating membrane Ω in Ra surrounded by simply connected bounded domains Ω j with smooth bounding surfaces S j (j = 1,……, n), where a finite number of piecewise smooth Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth components Si^* (i = 1 + kj-1,……, kj) of the bounding surfaces S j are considered, such that S j = Ui-1+kj-1^kj Si^*, where k0=0. The basic problem is to extract information on the geometry Ω by using the wave equation approach from a complete knowledge of its eigenvalues. Some geometrical quantities of Ω (e.g. the volume, the surface area, the mean curvuture and the Gaussian curvature) are determined from the asymptotic expansion ofexpansion of μ(t) for small │t│.
The trace of the wave kernel μ(t) =∑ω=1^∞ exp(-itEω^1/2), where {Eω}ω^∞=1 are the eigenvalues of the negative Laplacian -△↓2 = -∑k^3=1 (δ/δxk)^2 in the (x^1, x^2, x^3)-space, is studied for a variety of bounded domains, where -∞ 〈 t 〈 ∞ and i= √-1. The dependence of μ (t) on the connectivity of bounded domains and the Dirichlet, Neumann and Robin boundary conditions are analyzed. Particular attention is given for a multi-connected vibrating membrane Ω in Ra surrounded by simply connected bounded domains Ω j with smooth bounding surfaces S j (j = 1,……, n), where a finite number of piecewise smooth Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth components Si^* (i = 1 + kj-1,……, kj) of the bounding surfaces S j are considered, such that S j = Ui-1+kj-1^kj Si^*, where k0=0. The basic problem is to extract information on the geometry Ω by using the wave equation approach from a complete knowledge of its eigenvalues. Some geometrical quantities of Ω (e.g. the volume, the surface area, the mean curvuture and the Gaussian curvature) are determined from the asymptotic expansion ofexpansion of μ(t) for small │t│.