Let H and K be indefinite inner product spaces. This paper shows that a bijective map φ:B(H) →B(K) satisfies φ(AB^+ + B^+A) = φ(A)φ(B)^+ + φ(B)^+φ(A) for every pair A, B ∈ B(H) if and on...Let H and K be indefinite inner product spaces. This paper shows that a bijective map φ:B(H) →B(K) satisfies φ(AB^+ + B^+A) = φ(A)φ(B)^+ + φ(B)^+φ(A) for every pair A, B ∈ B(H) if and only if either φ(A) = cUAU^+ for all A or φ(A) = cUA^+U^+ for all A; φ satisfies φ(AB^+A) = φ;(A)φ;(B)^+φ;(A) for every pair A, B ∈ B(H) if and only if either φ(A) = UAV for all A or φ(A) = UA^+V for all A, where At denotes the indefinite conjugate of A, U and V are bounded invertible linear or conjugate linear operators with U^tU = c^-1I and V^+V = cI for some nonzero real number c.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10471082) the Shanxi Provincial Natural Science Foundation of China (No.20021005).
文摘Let H and K be indefinite inner product spaces. This paper shows that a bijective map φ:B(H) →B(K) satisfies φ(AB^+ + B^+A) = φ(A)φ(B)^+ + φ(B)^+φ(A) for every pair A, B ∈ B(H) if and only if either φ(A) = cUAU^+ for all A or φ(A) = cUA^+U^+ for all A; φ satisfies φ(AB^+A) = φ;(A)φ;(B)^+φ;(A) for every pair A, B ∈ B(H) if and only if either φ(A) = UAV for all A or φ(A) = UA^+V for all A, where At denotes the indefinite conjugate of A, U and V are bounded invertible linear or conjugate linear operators with U^tU = c^-1I and V^+V = cI for some nonzero real number c.